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ABSTRACT

One of the key tenets of bioinformatics is to find ways to enable the interoperability of

heterogeneous data sources and improve the integration of various biological data. High-

throughput experimental methods continue to improve and become more easily accessible.

This allows researchers to measure not just their specific gene or protein of interest, but the

entirety of the biological machinery inside the cell. These measurements are referred to as

“omics”, such as genomics, transcriptomics, proteomics, metabolomics, and fluxomics.

Omics data is highly interrelated at the systems-level, as each type of molecule (DNA, RNA,

protein, etc.) can interact with and have an impact on the other types. These interactions

may be direct, such as the central dogma of biology that information flows from DNA to RNA

to protein. They may also be indirect, such as the regulation of gene expression or metabolic

feedback loops. Regardless, it is becoming apparent that multiple levels of omics data must be

analyzed and understood simultaneously if we are to advance our understanding of systems-level

biology.

Much of our current biological knowledge is stored in public databases, most of which spe-

cialize in a particular type of omics or a specific organism. Despite efforts to improve consistency

between databases, there are many challenges which can impede efforts to meaningfully com-

pare or combine these resources. At a basic level, differences in naming and internal database

ID assignments prevent simple mapping between objects in these databases. More fundamen-

tally, though, is the lack of a standardized way to define equivalency between two functionally

identical biological entities.

One benefit of improving database interoperability is that targeted high quality data from

one database can be used to improve another database. Comparison between MaizeCyc and

CornCyc identified many manually curated GO annotations present in MaizeCyc but not in

CornCyc. CycTools facilitates the transfer of high-quality annotation data from one database



www.manaraa.com

x

to another by automatically mapping equivalent objects in both databases. This java-based

tool has a graphical user interface which guides users through the transfer process.

A case study which uses two independent Zea Mays pathway databases, CornCyc and

MaizeCyc, illustrates the challenges of comparing the content of even closely related resources.

This example highlights the downstream implications that the choice of initial computational

enzymatic function assignment pipelines and subsequent manual curation had on the overall

scope and quality of the content of each database. We compare the prediction accuracy of

the protein EC assignments for 177 maize enzymes between these resources and find that

while MaizeCyc covers a broader scope of enzyme predictions, CornCyc predictions are more

accurate.

The advantage of high quality, integrated data resources must be realized through analy-

sis methods which can account for multiple data types simultaneously. Due to the difficulty

in obtaining systems-wide metabolic flux measurements, researchers have made several efforts

to integrate transcriptional regulatory data with metabolic models in order to improve the

accuracy of metabolic flux predictions. Transcriptional regulation involves the binding of tran-

scription factors (i.e. proteins) to binding sites on the DNA in order to positively or negatively

influence expression of the targeted gene. This has an indirect, downstream impact on the

organism’s metabolism, as metabolic reactions depend on gene-derived enzymes in order to

catalyze the reaction.

A novel method is proposed which seeks to integrate transcriptional regulation and metabolic

reactions data into a single model in order to investigate the interactions between metabolism

and regulation. In contrast to existing methods which seek to use transcriptional regulation

networks to limit the solution space of the constraint-based metabolic model, we seek to define

a transcriptional regulatory space which can be associated with the metabolic distribution of

interest. This allows us to make inferences about how changes in the regulatory network could

lead to improved metabolic flux.
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1. GENERAL INTRODUCTION

Introduction

Continual improvements to high-throughput experimental technologies have led to a vast

increase in publicly available biological data, fundamentally shifting how we approach biological

problems. The “omics” data produced by these technologies encompass system-wide measure-

ments of cellular biology, including genomics, transcriptomics, proteomics, metabolomics, and

fluxomics. The availability of this systems-wide data allows researchers to study interactions

between various components of an organism, rather than studying the individual components

themselves.

Omics data can often be represented as a network of biological interactions. Biological

networks might represent regulatory interactions, protein interactions, or metabolic pathways.

Many public databases have been created to facilitate storage, browsing, and retrieval of this

information. Some specialize in certain types of omics [1, 2], certain types of interactions

[3], or specific organisms [4]. These databases allow researchers to access biological network

data for use in many applications, such as protein and gene annotation, elucidating regulatory

interactions, and metabolic engineering applications.

While the availability of these resources has been beneficial to the research community, there

remain many challenges to using this vast wealth of knowledge effectively. The astute researcher

may notice many inconsistencies between various public databases. Unfortunately, there has

been surprisingly little work done to quantify or explain how these differences may affect results

which are derived from such data. Part of the reason for this lies in the challenges inherent

in comparing various resources. These challenges have been well documented [5, 6], but not

resolved. Pathways are often defined using arbitrary guidelines for where to draw the pathway
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boundaries. Metabolites and chemical compounds can change structure (e.g. stereochemistry)

and chemical formula under different conditions (e.g. pH), and are often given many synonyms.

Typographical differences in names can add additional complexity, as some versions may spell

out “alpha” while others may use the symbol “α” instead. Genes and proteins often owe their

annotations to blast searches and gene homology, an effective but inexact method of comparing

gene sequences.

Additionally, the provenance of the data in public databases can be unclear. Not all data

is considered equal in value, and the impact of these different levels of data on the generation

of our knowledge bases is poorly characterized. We consider three classes of data representing

the methods which were used to generated it (Figure 1.1). Computational data is generated

using methods such as homology transfer and machine learning and often includes a built-in

acceptable error rate. Data generated from these methods are important, especially since they

are often used to help fill in missing information for lesser studied organisms. However, as this

data is typically inexpensive to reproduce, it is considered lower in value than other types.

Experimental data represent measurements of biological processes such as transcriptomics and

proteomics data, and as such is considered more valuable than computational predictions.

Nevertheless, it is important to consider that the methods used to measure biological data can

also be subject to significant quality issues as well. Curated data is generally considered the

most valuable data, as it represents knowledge reviewed by a domain expert and backed by

current literature. Unfortunately, this makes curated data both expensive and time-consuming

to produce.

One of the challenges in dealing with biological networks involves representing specific

differences in substrains of a particular organism and in handling context-specific data. In

metabolic engineering applications, the goal of a study is to alter the systems level regulatory

and metabolic functions of an organism in order to increase production or recovery of a desired

metabolite. For example, changes may include the addition or removal of metabolic and/or

regulatory functions. In Chapter 2, we describe a software tool which facilitates the modification

of metabolic databases to match specific alterations in the organism represented. This tool
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automates many of the challenges in matching database objects and provides methods for

conflict detection and resolution when multiple versions of the same information are present.

Chapter 3 describes two databases representing the same organism, Zea Mays. The databases,

CornCyc [7] and MaizeCyc [8], are both derived from the same gene model set but use different

computational pipelines to perform their enzymatic function annotations. This difference in

annotation method led both databases to significantly different conclusions. These resources

differ in gene and protein coverage, reaction and pathway content, and in distribution of reac-

tions across EC categories. This study is used to illuminate some of the challenges in comparing

public data. Despite using the same gene model set, each resource had different internal iden-

tifiers for their gene and protein names. Alternative splicing is represented through a naming

convention rather than encoded in a standard way within each database. Pathways differences

included both differences in pathway variants (pathways with similar functionality) as well as

outdated versions of existing pathways. In addition to describing the general comparison and

overlap of these resources, we validate 177 enzyme function annotations in order to illustrate

the difference in accuracy between these resources.

Metabolic networks have been used in metabolic engineering to provide a framework for a

system-wide integration of biochemical function and control information. Metabolic pathway

networks, which are used to construct constraint-based metabolic models of biochemical net-

works, have received a great deal of attention in recent years due to the increasing availability

of curated constraint-based metabolic models [9] and the difficulty in obtaining reliable and

complete parameter sets necessary to construct kinetic models [10]. The primary advantage

of constraint-based models is that they can be constructed using only reaction stoichiometry

information for an organism. Several tools are available to aid in constraint-based network

analysis, including COBRA ToolBox [11], CycSim [12], and CellNetAnalyzer [13].

In order to improve our understanding of the biological principles which govern the control

and function of cellular metabolism, it is necessary to analyze not just the interactions within a

single network, but the interactions between multiple levels of biological networks. In Chapter

4, we describe a novel method to combine the regulatory and metabolic networks of E. coli into
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a unified constraint-based model in order to investigate the constraints metabolic requirements

place on cellular regulatory states.

Dissertation Organization

This manuscript is organized into five chapters. Chapters 2-4 are manuscripts that have

either been published in a peer reviewed journal or are being submitted to one. Chapter 5 is a

general discussion on the significance and impact of the studies presented in Chapters 2-4.

Chapter 2, A Computational Platform to Maintain and Migrate Manual Functional Anno-

tations for BioCyc Databases (published in BMC Systems Biology, Chapter 2) describes a soft-

ware tool which can assist users to map biological annotations between BioCyc databases. This

chapter is significant as it addresses a practical need to be able to improve existing resources

based either on high-quality data found at an external source, or to provide context-specific an-

notations for use by researchers interested in novel variations of an otherwise well-characterized

organism. We demonstrate the utility of this software by automating the copy and transfer of

high-quality GO annotations from one database to another. My contribution to this work was

to identify and map the high-quality GO annotations, to design and develop the software, and

to perform the transfer of annotation data. I prepared all figures and wrote the initial draft of

the manuscript.

Chapter 3, The Quality of Metabolic Pathway Resources Depends on Initial Enzymatic

Function Assignments and Level of Manual Curation: A Case for Maize (to be submitted to

Plant Physiology, Chapter 3) presents a comparison between two resources for the organism

Zea Mays (corn). Two separate groups have created unique databases for the same organism

using the same starting gene model. By utilizing different protein prediction algorithms and

applying varying levels of curation, the resulting databases are significantly different. This

chapter is significant in that it illuminates some of the challenges for interoperability between

heterogeneous biological resources, as well as characterizes the impact differences in content

can have on analysis. My part in this work was to provide the database structure and access

expertise, design and develop the software that performed the comparison, and generate the



www.manaraa.com

5

EC distribution component. I prepared all figures and wrote the initial draft of the manuscript

with input from my co-authors.

Chapter 4, Modeling the Effect of Metabolic Constraints on Transcription Factor Activity

Levels (a manuscript prepared for submission to a scholarly journal, Chapter 4), describes a

method by which metabolic models of metabolism can be used to infer transcriptional regulator

activities in E. coli. This work is significant as it describes a novel approach to computational

strain design through the use of integrated regulatory and metabolic network models. In

contrast to existing methods which seek to use transcriptional regulation networks to limit

the solution space of the constraint-based metabolic model, we seek to define a transcriptional

regulatory space which can be associated with the metabolic distribution of interest. My

contribution to this work was to initially conceive and design the method for integrating the

two data types, perform the data processing and initial setup to generate the models using

existing software, and to test and validate the method. I prepared all figures and wrote the

initial draft of the manuscript.

Finally, Chapter 5 discusses general conclusions which can be drawn from chapters 2-4. I

discuss the significance and impact of each work, and identify key future directions which can

build upon the work done here.
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Figure 1.1 Biological data is understood to be inherently different in quality depending on its

source. Computationally derived knowledge is relatively easy to generate but is

understood to have a built-in level of acceptable error. Experimental data repre-

sent actual biological measurements, and as such are given greater consideration.

However, methods which characterize biological processes are also prone to mea-

surement errors. Curated data is both time-consuming and expensive to generate

as it requires a domain expert to review all available literature to ensure a high

level of accuracy in the data. These data are used to generate our knowledge bases.

Unfortunately, the methods which combine this knowledge are often poorly char-

acterized and under documented. Models derived from knowledge bases are used

to generate more data which can serve as a method for the iterative refinement of

our biological knowledge.
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2. A COMPUTATIONAL PLATFORM TO MAINTAIN AND MIGRATE

MANUAL FUNCTIONAL ANNOTATIONS FOR BIOCYC DATABASES

A paper published in BMC Systems Biology

Jesse R. Walsh, Taner Z. Sen, and Julie A. Dickerson

Abstract

Background

BioCyc databases are an important resource for information on biological pathways and

genomic data. Such databases represent the accumulation of biological data, some of which

has been manually curated from literature. An essential feature of these databases is the

continuing data integration as new knowledge is discovered. As functional annotations are

improved, scalable methods are needed for curators to manage annotations without detailed

knowledge of the specific design of the BioCyc database.

Results

We have developed CycTools, a software tool which allows curators to maintain functional

annotations in a model organism database. This tool builds on existing software to improve

and simplify annotation data imports of user provided data into BioCyc databases. Addition-

ally, CycTools automatically resolves synonyms and alternate identifiers contained within the

database into the appropriate internal identifiers.
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Conclusions

Automating steps in the manual data entry process can improve curation efforts for major

biological databases. The functionality of CycTools is demonstrated by transferring GO term

annotations from MaizeCyc to matching proteins in CornCyc, both maize metabolic path-

way databases available at MaizeGDB, and by creating strain specific databases for metabolic

engineering.

Background

Lower costs in genomic sequencing and improved methods of generating computation-

ally predicted functional annotations has led to the development of many model organism

databases using the BioCyc framework [1]. While computationally derived draft model organ-

ism databases provide useful starting points for storing biological knowledge, computationally

predicted annotations are known to suffer from significant false negative rates [2]. The ac-

curacy of annotations can be substantially improved by providing manual annotations mined

from literature by expert curators. Unfortunately, manual curation efforts have not kept up

with the proliferation of new databases. There are currently over 3500 databases in the BioCyc

collection, however only 42 of these currently receive moderate or intensive manual review [3].

Among the databases which receive manual review, maintaining manually curated data can

present a challenge. When an improved reference sequence is released for an organism, the

BioCyc database representing that organism must be recreated in order to incorporate the new

sequence data. While computationally predicted annotations within the database should be

updated using the new input data, it is usually preferred to keep existing manual annotations

even if the computational annotations are more recent. There is a need for tools which can

assist curators in persisting manually curated data through the update process either through

automation or by providing pipelines for the transfer of manual annotations of these databases.

Additionally, when several distinct databases host biological data for the same organism, it is

desirable to share manually curated annotations between these databases in order to improve
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data accuracy without duplicating curator efforts. In order to facilitate the transfer of data

between databases, robust import and export features must be made available.

Pathway Tools [4], the software which supports development and management of BioCyc

databases, provides several options for updating a BioCyc database. Changes may be made

manually within the pathway tools software by first locating the object to update and then

entering edit mode to make the changes to that object, as shown in Figure 2.1. Each object

type (protein, gene, metabolite, etc.) has a specific data entry form, which can be filled out and

saved. While this method allows the curator to directly review and verify the changes entered

into the database, it is inefficient when performing large numbers of updates.

Pathway Tools supports data imports through two file formats, “spreadsheet format” or

“Lisp-format”. Examples are provided in the supplemental materials C.1. The spreadsheet

format imports are limited in that some data cannot be imported using this method, including

GO term annotations, stoichiometry, and cellular localization. While the Lisp-format supports

the import of these data types, it requires users to have an understanding of the Lisp data

structure implemented in the BioCyc framework and is not easily converted to other standard

formats.

A final import option provided by Pathway Tools is through an application programming

interface (API) which exposes low level access to the BioCyc data structure. The API is

very flexible in that users can design queries to suit their specific needs, but they must have a

detailed understanding of the internal structure of a BioCyc database in order to do so. Certain

modifications to a BioCyc database, such as GO term annotations, require additional steps in

order to maintain the referential integrity of the database. This provides further barriers to

use, as users must have an understanding of how Pathway Tools implements storage of these

features.

Despite the diversity of import methods provided by Pathway Tools, there remains a need for

an import pipeline which is both capable of importing slot-value annotation data in batch and

accessible to researchers who are not experts in programming or BioCyc database structure.
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CycTools is a graphical interface for the BioCyc family of databases which improves data

management by providing methods which can import slot-value annotation data in batch.

Implementation

CycTools Dependencies

BioCyc is a family of databases built using the BioCyc Framework. Each member database

of the BioCyc collection typically represents the pathway and genomic data of a specific organ-

ism. BioCyc databases are built on the Frame Representation System (FRS) known as Ocelot

[5], which extends the Generic Frame Protocol (GFP). The native storage format for BioCyc

data is an object oriented database representation based on frames. The hierarchical nature of

data represented in a frame can be seen in Figure 2.2. A frame is a high level container that

groups information regarding either biological entities (genes, proteins, transcripts, compounds,

etc.) or biological relationships (reactions, pathways, regulation, etc.). Information about the

object a frame represents can be stored in either slots or slot-value-annotations. Information

stored in slots describes the frame (i.e. the name of the object, its physical properties, or

annotations assigned to it), while information in slot-value-annotations provides context for

the information in the slots (i.e. pubmed citations, author credits, or experimental evidence

codes). The data stored in frames and slots in the database can be accessed programmatically

through the Pathway Tools API.

The API exposes many of the internal functions of Pathway Tools and allows low level access

to the internal data structure of any BioCyc database hosted by Pathway Tools. Advanced users

can create third-party software which can read or write to BioCyc databases using customized

queries. The API is designed to support the Lisp programming language, but the libraries

PerlCyc [6] and JavaCycO [7] allow users to access the API through Perl and Java respectively.

JavaCycO is an object-oriented improvement to the JavaCyc library. JavaCycO contains

the JavaCyc [6] class and is fully backwards compatible with it. In addition to extending and

improving the functionality of JavaCyc, JavaCycO provides a client-server model for accessing

the Pathway Tools API. By running the server “JavaCycServer” on the same machine as



www.manaraa.com

13

Pathway Tools, JavaCycO provides remote access to the Pathway Tools API to JavaCycO

clients. CycTools depends on the JavaCycO library to provide access to the Pathway Tools

API in order to read and write to a BioCyc database.

Cloning a Database

Generally speaking, CycTools can modify any BioCyc database hosted by Pathway Tools.

Two notable exceptions to this are the MetaCyc and EcoCyc databases, which are integrated

into Pathway Tools and flagged as read-only. Since these databases can not be removed or

modified, the only way to edit them is to edit a copy. Pathway Tools will also refuse to load

two databases with the same name, which prevents the user from simply installing a second

copy of a database without first renaming and modifying several of the files and folders within

the copy. This restriction will also prevent the user from creating and hosting several versions of

a database in the same Pathway Tools instance. In order to circumvent this restriction, a bash

script which automatically clones a database and modifies the appropriate files was created.

Overview of Import Process

The CycTools import function provides a graphical pipeline for importing spreadsheet data

into frame objects in the Pathway Genome Database (PGDB). The import utility takes as input

a comma-separated data file, maps the data to frames in the PGDB, previews the resulting

changes to the PGDB, and performs the update of the PGDB as shown in Figure 2.3.

CycTools must be able to connect to a server running Pathway Tools in API mode and

JavaCycO. Once connected, the user will select one of the available import types: import

slot data, import slot-value annotation data, import GO annotations, delete frames, or create

transcriptional regulation frames. This determines the format of the import file and how the

imported data are applied to database objects. Additional options are available which allow

the user to specify how to handle existing data in a slot or annotation which will be modified

during import, shown in Figure 2.4.

If the overwrite option is set, CycTools will first delete the existing data in a slot or anno-

tation before writing the user provided data to that slot or annotation. If the ignore duplicates
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option is set, CycTools will check each new value against each existing values in a slot or an-

notation. If the new value exactly matches an existing value, it will not be added to the slot

or annotation. This option will prevent the user from adding a duplicate value to a slot or an-

notation, but will not remove an existing duplication. Thus, if a protein were to be annotated

with a single GO term twice, this option will prevent CycTools from adding a third identical

annotation using that GO term, but would leave the existing annotations.

The author credits option allows the user to assign credit to an individual or organization

for each frame updated during the import process. CycTools autofills a list of curators and

organizations described in the currently selected database. For each frame updated during the

import, the frame is modified to append the curator or organization to the “CREDITS” slot.

This update is annotated as a revision to the frame and is timestamped to the current system

time.

GO Term Annotations

GO term annotation imports are handled slightly different from other annotations imports.

In particular, Pathway Tools has specific requirements for the storage of GO term descriptions

within a BioCyc database. The Pathway Tools API provides a method called “import-go-

terms” which automatically creates the necessary frames when provided with a valid GO term.

Pathway Tools is packaged with a file containing GO term information which is used by this

method to populate the GO term frames it creates. CycTools makes a call to “import-go-terms”

once for each GO term that appears during a GO term annotation import.

Resolving Alternate Identifiers to Database Frames

Each frame object in the database is uniquely identified by an internal identifier known as

the frame ID. The BioCyc framework supports annotating frames with alternate identifiers, such

as those which are commonly used in literature to refer to genes, proteins, and other biological

objects. For example, “PYRUVATE” in EcoCyc has the synonyms alpha-ketopropionic acid,

BTS, α-ketopropionic acid, acetylformic acid, pyroracemic acid, 2-oxopropanoic acid, pyruvic

acid, 2-oxopropanoate, and 2-oxo-propionic acid. Despite the availability of these alternate
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identifiers, all queries to the database must resolve to valid frame IDs. A key benefit of CycTools

is support for automatically resolving alternate identifiers into frame IDs, removing the need for

researchers to perform the conversion manually. Alternate identifiers must already be annotated

to the object they identify within the database and must be stored in one of the slots designated

as a “name” slot in Pathway Tools. These slots typically include the “accession” slot, “common-

name” slot, “synonym” slot, and foreign database identifiers used in the “dblink” slot, but can

vary with object type.

During the import process, CycTools attempts to resolve all user provided identifiers into

frame IDs. First, CycTools checks if the user provided identifiers match exactly to any existing

frame IDs. If all identifiers are determined to be valid frame IDs, no further action is needed

and the ID resolution step is skipped. If one or more IDs are not valid frame IDs, CycTools will

attempt to resolve them into valid frame IDs using an indexed text search within the database

using the “substring-search” method provided by the Pathway Tools API. The substring-search

command can find objects with frame IDs that exactly match the search string which match

to a substring of any “name” slot. The search term provided by the user must be at least 3

characters with no commas or spaces. This method requires the user to specify the object type

to search and the alternate identifiers to be converted to frame IDs. For each identifier in the

import file, CycTools requires that the searched term match exactly and entirely to at least one

synonym provided by the database for the matching object. Thus, while substring search will

match a partial identifier to a frame, CycTools enforces a stricter matching policy by filtering

out matches that do not contain complete matches to an alternate identifier. Additionally,

CycTools requires that only one such matching object be found in the database. If the search

returns only a single frame, that frame’s ID is substituted for the searched term. If multiple

matches or no match is found, the user is given the option to ignore that data during import,

or to cancel the import process altogether.

Create Transcriptional Regulation Frames

Importing novel transcriptional regulatory interactions requires creating regulation frames

within the BioCyc database to represent the interaction. Since this import type generates new
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frames rather than modifying existing ones, the user does not provide frame identifiers with the

import data. As a result, no frame ID search is necessary. CycTools instead requests unique

sequential identifiers for each new regulation object created. CycTools is not able to recognize

if an equivalent regulatory interaction exists in another regulation frame, and therefore relies

on the user to ensure that regulatory interactions are not duplicated.

Delete Frames

CycTools implements frame deletion using the Pathway Tools API method “delete-frame-

and-dependents”. This method detects the object type of the frame which is being deleted and

attempts to also delete any frames which depend on the deleted frame. For example, deleting

a gene frame will also delete the gene’s products, and potentially enzymatic reactions which

depend on an enzyme produced by the gene. Regulation frames and history note frames linked

to the deleted frame are also deleted.

Preview Changes

Before any permanent modification is made to the database, the user can preview the

pending changes to the database. A list shows all frames that will be updated as per the

user data. Individual frames can be viewed which will compare the original frame data to the

modified data. All changes between the original and modified frames will be highlighted to

help the user more easily verify the import. The differences are calculated using a free library

called google-diff-match-patch [8]. Highlighting is inferred from the text differences reported

by the diff tool.

Commit to Database

After the update is performed, the results of the update can be reviewed. This will provide a

log of the successful and failed imports which can be used to verify the success of the import, or

to track down problems with the data. Each individual import will be listed as either successful

or failed, will be time stamped, and will refer to the original row of data in the spreadsheet

which that update represents. Note that it may be possible to have several updates refer to the
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same row of data. At this point, the database is in a modified but unsaved state. If the user is

satisfied with the update, the changes can be permanently saved to the database. Otherwise,

the user can undo all changes to the database since the last save. The user will also be given

the option of saving the change log to a file.

Import Error Detection

CycTools checks for errors and provides user feedback at several points during the import

process. CycTools will directly reject syntax errors such as bad file formats of invalid references

to database objects. Illegal database operations on the BioCyc database will cause failed

imports in the final commit step, which will be flagged to users so that they can revert the

database to an unmodified state. Imports with identifiers which cannot be resolved to existing

database objects will be reported to the user as such.

Many errors in data entry are technically valid and thus cannot be differentiated from

intentional input. If a slot label is misspelled, for example, CycTools will assume the user

intends to create a slot using the misspelled label. The preview step provides users with a

frame-by-frame comparison of the database in a modified and an unmodified state. Users are

encouraged to browse the anticipated changes in order to detect any data entry errors that

would otherwise be valid imports.

Results and Discussion

Use Case: MaizeCyc and CornCyc GO Term Annotation Migration

MaizeCyc [9] and CornCyc [10] are two separate BioCyc databases both based on the Zea

mays B73 RefGen v2 gene models [11]. MaizeCyc is developed by Gramene [12] in collabo-

ration with MaizeGDB [13] and CornCyc is developed by Plant Metabolic Network [14] and

MaizeGDB [15, 16, 17]. Recent comparison between MaizeCyc and CornCyc revealed annota-

tion differences in data content and quality despite both databases having been based on the

same reference sequence [18, 19]. MaizeCyc does not contain alternative splicing information;

therefore each gene is only linked to a single gene product. CornCyc does contain alternative
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splicing information, where gene products linked to alternate splice variants are suffixed with

a numerical identifier. It is interesting to note that even though MaizeCyc does not contain

alternative splicing information, it still uses the numerical suffix convention for differentiating

between alternately spliced proteins.

Recent curation efforts have provided GO term annotations for several proteins in the

MaizeCyc database; however CornCyc version 4.0 does not currently contain any GO anno-

tations. Since MaizeCyc and CornCyc both were created using the same sequence data and

represent the same biology, the biological functions of MaizeCyc genes should be identical to

those of CornCyc genes. In an effort to update the GO term annotations of the maize genome

databases and ensure consistency across both databases, the manually curated GO annotations

needed to be transferred from MaizeCyc to CornCyc.

All GO term assignments and their annotations were exported from MaizeCyc using a query

to the Pathway Tools API. GO term / Annotation pairs with an evidence code beginning with

EV-EXP (i.e. experimentally verified annotations) were retained, while all others were removed.

This represents the GO term annotations which have been manually verified by curators. Source

protein objects were identified by their gene model name (e.g. GRMZM2G136161 P01) with

the splice variant suffix attached (i.e. the P01). This identifier was chosen as it is provided

as a synonym in both MaizeCyc and CornCyc, which allows for accurate mapping between

objects in both databases. Although MaizeCyc and CornCyc were built using the same gene

model set, the internal frame IDs of the protein objects in Pathway Tools were generated with

different syntax rules (i.e. most proteins in MaizeCyc begin with GBWI, while the equivalent

proteins in CornCyc begin with GDQC).

In order to ensure the most faithful mapping between MaizeCyc and CornCyc proteins,

protein identifiers from MaizeCyc were used as query terms in a substring (synonym) search

in CornCyc. Exactly matching splice variants provided 179 matches between MaizeCyc and

CornCyc as seen in Figure 2.5. While an additional 5 matches can be made between this group

of MaizeCyc and CornCyc proteins by relaxing the requirements to allow matches between

alternate splice variants, these additional matches were not included in the final import. The

remaining 458 gene products from MaizeCyc with EV-EXP annotations do not exist in Corn-
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Cyc. The annotation data for the 179 matching protein GO term annotations were inserted

into the CornCyc database using the CycTools import feature.

Use Case: Creating Strain-specific EcoCyc Databases

Metabolic engineering projects lead to the generation of genetically unique strains. These

altered strains are metabolically similar to the parent strain, but include a small number of

modifications such as gene additions, deletions, or regulatory changes. Many novel strains

may be created as a result of iterative engineering interventions performed on a parent strain.

One possible solution to storing this information is to generate a new BioCyc database that

is synchronized to the altered metabolism of the engineered strain. By using the most up-

to-date version of EcoCyc and modifying it with information on engineering interventions, a

new database is created which more accurately represents the engineered strain. This use

case focuses on modifications to the E. coli organism performed for the increase of fatty acid

production.

E. coli Strains

Of the many strains of E. coli that are represented as model organism databases in the

BioCyc database collection, EcoCyc has received the most manual curation. It is therefore

desirable to leverage annotations from EcoCyc whenever possible while developing new strain

databases. The metabolically engineered strains for which strain specific databases were de-

veloped in this study, strain ML103 and strain MLC115-1, were described in Liam et. al [20].

The genotype of ML103 is MG1655 ∆fadD. The genotype of MLC115-1 is MG1655 ∆fadD,

∆poxB, ackA-pta::cmR

New regulatory links were predicted using the GTRNetwork software [21]. These results

were derived for the MG1655 network, and so were applied to a copy of the wildtype EcoCyc

database rather than the ML103 or MLC115-1 databases.
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Copy EcoCyc

It is important to retain as much known information from the parent strain as possible,

therefore the first step is to create a clone of the database representing the parent strain.

Once the copy has been prepared, further modifications are necessary to align it to the altered

metabolism of the engineered strain. In this case, the EcoCyc E. coli MG1655 database is

downloaded (available free to academic users, requires registration) [22] and a copy is made to

represent our strain specific database.

Strain Specific Updates to EcoCyc

Three types of data were added to the base EcoCyc database in order to represent changes

in the engineered strain’s metabolism. A gene deletion in the strain is represented in EcoCyc

by a deletion of the associated gene object and the gene object’s functionality. If the gene

product is an enzyme, then that protein product is deleted and any reactions it catalyzes have

that enzyme association removed from them. If the reaction has no existing enzymes which

can catalyze the reaction, then the reaction is also removed. If the gene is a transcription

factor, than the transcription factor is removed as well as any regulation objects in which

that transcription factor was either a regulator or target. Preprocessing for this database

modification simply requires compiling the list of genes to delete. CycTools automatically

removes additional objects which are connected to the deleted gene as described above.

A thioesterase with altered specificity added to the strain improves specificity for specific

fatty acid chain lengths. This does not represent novel metabolic functionality in the strain,

but rather changes relative activities of an existing functionality. Since kinetic information and

relative specificities of enzymes is not stored explicitly in current PGDBs, this information is

best added to the comments section of the existing enzyme. Preprocessing in this case requires

the user to explicitly write out the comment and provide the identifier of the enzyme to be

modified.

The final modification made to the base EcoCyc database is the inclusion of novel computa-

tionally predicted transcription factor regulation. These regulatory interactions were predicted
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using GTRNetwork [21]. Transcription factor regulatory interactions in EcoCyc are typically

described by a regulation object which describes a transcription factor’s regulatory activity of

a transcription factor binding site, but can also be described as a direct interaction between

the regulating entity and the regulated gene. As the results produced in this computation

prediction tool do not provide predicted binding sites, binding site information is not available

for import. Preprocessing in this case requires the user to assemble the list of regulator and

target interactions.

Each type of modification to the EcoCyc database must be made separately. In this case, the

three modifications, gene deletions, thioesterase comment, and predicted regulation, represent

three types of modification. Gene deletions are removed from the database by selecting the

frame deletion option and loading the list of genes to be deleted. CycTools automatically

removes extended links to the provided genes, such as their products and reactions. The

thioesterase comment is performed as an update to an existing frame. A file with the comments

is loaded and CycTools appends the new comment to the end of any existing comments on

the enzyme. Importing novel predicted transcription factor regulation requires creating new

regulation frames. This process is performed as two steps internally to CycTools. First, new

frames are created using the user provided unique Frame IDs. An import step is then used to

load the regulation data into the newly created regulation frames.

Conclusions

Managing and migrating manual annotations in model organism databases are essential to

maintaining high-quality biological data. In this work we present a software tool which provides

a simple pipeline for the maintenance and transfer of manual annotations within and between

BioCyc databases. CycTools improves user control over the import process by providing users

with methods to edit slot values or slot-value annotations for any frame in a BioCyc database.

CycTools also provides methods which allow users to create transcriptional regulatory frames

or to delete frames through the import process.

CycTools provides methods that can make small or large-scale edits to a BioCyc database.

Databases using the BioCyc framework typically contain between a few frames and several
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thousand frames. CycTools is capable of processing and displaying several thousand entries,

but is limited to a single object type for each import. This means that CycTools is best suited

to making many changes to a BioCyc database of a specific type, rather than making many

small changes to various object types.

Tracking the changes made to a BioCyc database is made easier with CycTools. The BioCyc

framework provides methods to credit an author or organization for frame edits. CycTools

allows users to provide curator information which is stored in the BioCyc framework during

the import process. CycTools also provides a change log of actions taken during import in

order to assist users in recording changes and identifying problems.

In this manuscript, we have demonstrated the utility of CycTools by transferring GO anno-

tations between two databases representing identical biology but having differing data content.

We have also demonstrated the ability of CycTools to make several small scale changes to a

database in order to customize the content to represent a non-model organism.

Availability and Requirements

Project name: CycTools

Project home page: https://github.com/jrwalsh/CycTools/

Operating system(s): Any platform supporting Java

Programming language: Java

Other requirements: Java 1.7+, Pathway Tools, JavaCycO

Pathway Tools must be installed and running on a Unix-like server system (due to use of the

UnixDomainSocket class) and have the relevant PGDB installed. JavaCycO must be running

in server mode on the same server as Pathway Tools. For remote connections, JavacycServer

listens over a port connection, so this user selected port must be open to outside traffic. Cyc-

Tools is written in Java and is thus cross-platform compatible, however Java must be installed

on the client machine.

License: GNU GPL Any restrictions to use by non-academics: None
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Figure 2.1 Screenshot of Pathway Tools Protein Editor. Editing database objects through the

Pathway Tools software editors is done be entering information into forms which

describe information specific to the type of object being edited.
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Figure 2.3 Import Process Diagram. Synonym based search automatically occurs if import

file does not contain Frame ID’s. Only unique matches to frame IDs are allowed

in order to prevent ambiguity in the import process.
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Taner Z. Sen

Abstract

As metabolic pathway resources become more commonly available, researchers have un-

precedented access to information about their organism of interest. Despite efforts to ensure

consistency between various resources, information content and quality can vary widely. Two

maize metabolic pathway resources for the B73 inbred line, CornCyc4.0 and MaizeCyc2.2, are

based on the same gene model set and were developed using Pathway Tools software. These

resources differ in their initial enzymatic function assignments and in the extent of manual

curation. We present an in-depth comparison between CornCyc and MaizeCyc to demonstrate

the effect of initial computational enzymatic function assignments on the final quality and

content of metabolic pathway resources.

MaizeCyc contains over twice as many annotated genes and more proteins than CornCyc.

CornCyc contains on average 1.6 transcripts per gene, while MaizeCyc contains almost no al-

ternate splicing. MaizeCyc does not match CornCyc’s breadth in representing the metabolic

domain. MaizeCyc has fewer compounds, reactions, and pathways than CornCyc. Corn-

Cyc’s computational predictions are more accurate than those in MaizeCyc when compared
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to experimentally determined function assignments, demonstrating the relative strength of the

enzymatic function assignment pipeline used to generate CornCyc.

Our results show that the quality of initial enzymatic function assignments primarily de-

termines the quality of the final metabolic pathway resource. Therefore, biologists should pay

close attention to the methods and information sources used to develop a metabolic pathway

resource to gauge the utility of using such functional assignments to construct hypotheses for

experimental studies.

Introduction

Developing a metabolic pathway resource involves many steps. These steps can be described

as follows: Given a genome assembly and a gene model set, translated protein sequences are

fed into a computational pipeline. Enzymes are then predicted and assigned a functional

category, usually based on Gene Ontology (GO) [1] terms or Enzyme Commission (EC) [2]

numbers. After the initial enzymatic function assignments are made, enzymes are then mapped

to a reference metabolic pathway database to create an initial metabolic pathway resource.

Finalizing a pathway resource requires manual curation to improve the accuracy of the final

metabolic representation.

A wide-range of computational methods can be applied at each step of developing a metabolic

pathway resource. This variance makes a comparison of metabolic pathway resources challeng-

ing. The problems that complicate comparison between heterogeneous databases have long

been recognized [3], and several attempts have been made to homogenize data from different

sources [4, 5]. Studies seeking to compare data content between resources [6] describe many of

the challenges of matching biological data in order to assess overlap. Non-standard chemical

naming conventions, difficulty matching stereo-chemistry and protonation, as well as defining

pathway boundaries and managing gene variants all create challenges for comparing metabolic

pathway resources.

For maize, two metabolic network resources are available, both of which are based on the

B73 RefGen v2 genome assembly/gene model set [7] and used the Pathway Tools software [8]

to map enzymes onto reactions and pathways. This provides a unique opportunity to explore
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the effect of the initial enzymatic function assignment pipeline on the final metabolic pathway

resource.

CornCyc4.0 [9] was developed using the Ensemble Enzyme Prediction Pipeline [10] cre-

ated by Plant Metabolic Network (PMN) [11] in collaboration with MaizeGDB (http://www.

maizegdb.org) [12, 13]. MaizeCyc2.2 [14] was developed based on the Ensembl XRef pipeline

[15, 16] in collaboration between two database projects, Gramene (http://www.gramene.org)

and MaizeGDB. The term “Ensemble” in the CornCyc pipeline refers to integration of meth-

ods, whereas “Ensembl” in the MaizeCyc pipeline refers to the collaborative project between

the European Bioinformatics Institute and the Wellcome Trust Sanger Institute.

In order to gain insight into the strengths of each resource based on initial enzymatic

function assignments, we compared the data content and accuracy of CornCyc and MaizeCyc.

To accomplish this goal, we calculated the overlap between the resources in multiple categories

(gene, protein, compound, reaction, and pathway) as well as compared the resources against

experimentally-assigned enzymatic functions.

Methods

Resource Preparation and Access

We compared CornCyc version 4.0 with MaizeCyc version 2.2 hosted within Pathway Tools

17.0 [8]. Both resources are based on the B73 RefGen v2 reference genome assembly and the

filtered gene set (FGS) [7]. Throughout the text, we refer to CornCyc4.0 as CornCyc and

MaizeCyc2.2 as MaizeCyc unless otherwise specified. Although the v2 assembly of the maize

genome sequence is not as recent as the v3 assembly, MaizeCyc was only available for v2,

which drove our decision to use a previous assembly. The current version CornCyc6.0 uses the

more recent v3 assembly. We used an older version of CornCyc as it used the v2 assembly.

Also, while MaizeCyc was developed using Pathway Tools 17.0, CornCyc was developed using

Pathway Tools 16.5. We upgraded CornCyc to Pathway Tools 17.0 using PathoLogic built-in

upgrade process. Our comparison between the original and the upgraded CornCyc versions

shows that the change is negligible: for example, no reactions and only 0.4% of pathways are

http://www.maizegdb.org
http://www.maizegdb.org
http://www.gramene.org
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affected by the upgrade for the purpose of comparing CornCyc and MaizeCyc. The decision

to use Pathway Tools 17.0 was made in order to compare both resources. All data extraction

queries to the CornCyc and MaizeCyc resources were made using the JavaCycO libraries [17]

and the Pathway Tools Application Program Interface (API). Details of the methods used to

extract and compare the data from CornCyc and MaizeCyc are available in Appendix B.

CornCyc Annotation Pipeline

CornCyc was developed based on the Ensemble Enzyme Prediction Pipeline (E2P2) [10].

E2P2 uses an average weighted integration algorithm based on results from individual classifiers

such as BLAST [18], CatFam [19], and Priam [20]. The ensemble algorithm relies on an average

weighted integration scheme where the weight of each predicted model was determined by a

5-by-3 nested cross-validation routine. For CornCyc version 4.0, E2P2 version 2.1 (https://

dpb.carnegiescience.edu/labs/rhee-lab/software) was used with BLAST’s e-value cutoff

set to be <= 1e−30. The training of E2P2 and the reference databases used in the annotation

process are based on the Reference Protein Sequence Dataset (RPSD) version 2.0 included in

the E2P2 v2.1 package. RPSD contains protein sequences with experiment support of existence

compiled from SwissProt [21], MetaCyc [22], and BRENDA [23].

After the initial database generation, CornCyc was further modified using the SAVI pipeline

[11], which categorizes the initially predicted pathways to be retained, deleted, or manually

reviewed based on a set of rules developed as a part of curation process. SAVI also de-

tects missing pathways. The SAVI program uses six curated pathway library files to enable

semi-automated changes to a predicted pathway database (http://www.plantcyc.org/about/

savi_pipeline.faces). All pathway library files used in validating and refining CornCyc 4.0

are available online at: ftp://ftp.plantcyc.org/Pathways/SAVI_validation_lists/SAVI_

validation_lists_archive/SAVI_lists_pmn8_july_2013/

MaizeCyc Annotation Pipeline

The development pipeline for MaizeCyc was described in detail previously [14]. MaizeCyc

is based on the B73 RefGen v2 filtered gene set. The pipeline uses the “canonical transcript”

https://dpb.carnegiescience.edu/labs/rhee-lab/software
https://dpb.carnegiescience.edu/labs/rhee-lab/software
http://www.plantcyc.org/about/savi_pipeline.faces
http://www.plantcyc.org/about/savi_pipeline.faces
ftp://ftp.plantcyc.org/Pathways/SAVI_validation_lists/SAVI_validation_lists_archive/SAVI_lists_pmn8_july_2013/
ftp://ftp.plantcyc.org/Pathways/SAVI_validation_lists/SAVI_validation_lists_archive/SAVI_lists_pmn8_july_2013/
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with the longest open reading frame for functional annotation based on scores derived from the

Ensembl XRef pipeline [16] following protein sequence alignment to UniProt [21]. Additional

sources of enzymatic function annotations include classical maize genes [24], coordinates and

cross-references from Maizesequence.org (now folded into Gramene), MaizeGDB (locus names/

synonyms, molecular function, etc.) [12, 13], UniProtKB/SwissProt [21] (functional descrip-

tions and EC assignments), Gene Ontology [1] (mol. function, biol. process, cellular location),

and proteomics-supported gene annotations (e.g., cellular location). Reactions and pathways

were computationally inferred using the Pathologic component of Pathway Tools [8].

Availability and Requirements

The software used to query CornCyc and MaizeCyc is available as an executable Java

program at https://github.com/jrwalsh/CornCompare. Pathway Tools must be installed

and running on a Unix-like server system (due to use of the UnixDomainSocket class) and

have CornCyc and MaizeCyc installed. JavaCycO must be running in server mode on the

same server as Pathway Tools. This software was written in Java and is thus cross-platform

compatible when Java is installed on the client machine.

Results and Discussion

Validation of Enzymatic Function Assignments Against Experiments

To compare the prediction accuracy between these databases, we extracted 197 experimen-

tally determined enzyme annotations for maize from UniProt [21]. Then we matched these

proteins to the B73 RefGen v2 gene models using BLAST based on a sequence identity cutoff

of 96% and coverage of 90 which reduced the number of maize enzymes to 177. We then

calculated the precision, recall, and F-score values by comparing computational predictions of

EC numbers against experimentally determined assignments. The formulas of the performance

measures are provided below.

We used the following definitions for our performance classifications: 1) true positive (TP)

is when a predicted function of an enzyme matches an experimentally determined function

https://github.com/jrwalsh/CornCompare
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category for that enzyme. 2) False positive (FP) is when a predicted function does not match

any experimentally determined function category for that enzyme. Finally 3) false negative

(FN) is when a function category is an experimentally determined but is not predicted by the

annotation algorithm. The fourth category, true negative (TN), is a quantity that is difficult

to capture, as it means that for a given enzyme no prediction is made for a functional category

that is also ruled out experimentally. Precision, recall, and F-score only uses TP, FP, and FN

classifications. A summary of the results is shown in Table 3.1.

We used the following expressions for analysis: Precision = TP/(TP + FP ), recall =

TP/(TP+FN). Precision is a ratio of correctly predicted classes among all the predictions, and

recall is a ratio of correctly predicted classes among all the possible correct classes. F-score is a

combination of these two measures and provides a single measure for comparing the performance

of two sets of predictions. F-score is defined as (precision ∗ recall)/(precision+ recall).

CornCyc performs better than MaizeCyc, as demonstrated by higher precision (0.88 versus

0.79), recall (0.91 versus 0.24), and F-score (0.90 versus 0.38) (Figure 3.1). CornCyc’s perfor-

mance originates from the much higher number of true positives and much lower number of

false negatives in its predictions. For biologists, what this means is that when they find an

annotation in CornCyc, it is more likely to be correct than it is in MaizeCyc.

Comparison of Data Overlap

The comparison between genes in CornCyc and MaizeCyc in Figure 3.2 shows a large

divergence between the two resources, despite the fact that both were developed based on the

same gene model set. Part of the reason for this is that the scope of MaizeCyc includes all

genes in the maize genome, while the scope of CornCyc includes only enzyme-coding genes. In

order to draw a useful comparison between the gene content in CornCyc and MaizeCyc, we

only considered genes associated with a form of annotation. Specifically, we define a gene to

have annotation if it is either assigned at least one GO term or is associated with a protein that

catalyzes at least one reaction without any filtering by evidence codes. In CornCyc, only 2.0%

of the 9,142 genes have GO term annotations, but 99.7% are mapped to at least one reaction.
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In MaizeCyc, 53% of the 39,654 genes have GO term annotations while only 8.1% are mapped

to at least one reaction (Figure 3.2).

Only proteins that mapped to at least one reaction were included in the analyses. An

additional step in the matching process was needed to handle a group of approximately 5,800

proteins in MaizeCyc that did not include a gene model name as a synonym. These pro-

teins are annotated with non-specific and non-unique names (i.e., 325 such proteins are named

“Nucleoside-triphosphatase”). For this group, we used the gene model name of the associated

transcript rather than the name of the protein to perform the comparison. Figure 3.2 shows a

large increase in the number of proteins unique to CornCyc compared to the number of unique

genes in CornCyc. This is due in large part to the fact that this version of CornCyc represents

alternative splice variants and contains on average 1.6 splice variants per gene. In contrast,

MaizeCyc includes very few alternatively spliced variants.

While 1,686 reactions were found in both CornCyc and MaizeCyc, CornCyc contains 1,275

reactions not present in MaizeCyc and MaizeCyc contains 591 reactions not present in CornCyc

(Figure 3.2). In order to determine if the differences in reaction content reflect differences

in coverage of reaction space, we compared the distribution of Enzyme Commission (EC)

categories for the reactions in each resource. Reactions were assigned to EC categories using

their top-level EC class. We compared the total reaction content of CornCyc and MaizeCyc to

the portion of reactions unique to CornCyc and MaizeCyc, as well as the total reaction content

of BRENDA [23] and MetaCyc [22] (Figure 3.3). MetaCyc contains the source reactions from

which CornCyc and MaizeCyc imported their reaction information, while BRENDA contains

a comprehensive source of enzyme information derived from literature.

Table 3.2 shows the distribution and overlap of reactions by top-level EC category for Corn-

Cyc and MaizeCyc. A total of 256 reactions in CornCyc and 185 reactions in MaizeCyc were

not assigned an EC number. Reactions might be missing an EC number in three cases: 1) the

reaction is pending review by the EC commission, 2) the reaction is hypothetical without an

experimentally characterized enzyme activity, or 3) if the reaction is not associated with an en-

zyme such as the case for some transport reactions. Of the reactions without EC assignments,

21 were classified as transport reactions in CornCyc and 94 were classified as transport reac-
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tions in MaizeCyc. CornCyc has more unique reactions than MaizeCyc in all EC categories.

Figure 3.3 shows the frequency of reactions in each category for each resource. Comparing the

reactions unique to CornCyc and MaizeCyc reveals that CornCyc has stronger representation

than MaizeCyc in each category except lyases.

We considered only small, non-elemental molecules (i.e., no proteins, no DNA/RNA, etc.).

Since compounds are imported into the CornCyc and MaizeCyc from MetaCyc, we do not

expect them to be intrinsically unique in one resource except when the two resources contain

reactions catalyzing compounds unique to those reactions. As expected, CornCyc contains

significantly more small-molecule compounds than MaizeCyc (Figure 3.2), providing a greater

coverage of the compound space.

CornCyc and MaizeCyc have 280 pathways in common (Figure 3.2). There are 167 and

148 pathways unique to CornCyc and MaizeCyc, respectively. In some cases, difference in

pathways seems to originate from updates to the version of MetaCyc that was used. Some

examples are: 1) benzoxazinoids biosynthesis, a pathway unique to maize and a few other

species [25] (the pathway is absent in MaizeCyc), 2) Indole-3-acetate biosynthesis I based on

new evidence about major 2-step pathway for auxin biosynthesis [26] (the pathway variant

is absent from MaizeCyc), and 3) alternate C4-photosynthesis pathways: there are two C-4

variants in CornCyc, but only one variant in MaizeCyc.

Some of the differences are caused by variation in functionally similar pathways. A pathway

variant might use different co-factors, enzymes, or reactions. Which pathway variant was se-

lected for inclusion in CornCyc and MaizeCyc can be partly attributed to the pathway inference

step performed by Pathologic in the CornCyc and MaizeCyc pipelines. Pathologic selects path-

ways to import from MetaCyc based on the enzyme annotations available within the database.

In certain cases, BioCyc resources created from different versions of MetaCyc can be signifi-

cantly different from one another, which makes pathway variants comparison challenging. For

example, the CornCyc pathway Nonaprenyl Diphosphate Biosynthesis I and MaizeCyc pathway

Nonaprenyl Diphosphate Biosynthesis III have sharp contrasts in pathway structure. Even a

similar pathway structure can lead to different biological and evolutionary implications, such

as the C-4 pathway example shown in 3.4. Notwithstanding the gene and enzyme differences,
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which are overlaid next to their reactions the diagram, the pathways themselves have almost

the same metabolic structure. The only difference in the pathway structure is that CornCyc

breaks the reaction

CO2 + H2O + phosphoenopyruvate H + phosphate + oxaloacetate (3.1)

into two steps, treating the CO2 + H2O hydrogencarbonate part as a separate reaction.

From an evolutionary perspective, this is highly significant, since the lack of this step in Maize-

Cyc implies that the enzyme in MaizeCyc can handle the entire conversion, while CornCyc has

two enzymes perform the two steps separately. In the current version of MetaCyc, the version

of the pathway present in MaizeCyc is removed, and only the version included in CornCyc is

available. Therefore, biologists will benefit from knowing which MetaCyc version was used to

create their metabolic resource of interest.

The Level and Quality of Manual Curation Differentiate Metabolic Databases

Manual curation is a powerful approach for ensuring consistency and accuracy of a database.

Unfortunately, the time-consuming and expensive nature of curation means that only limited

parts of a data resource will receive manual review. In the case of CornCyc and MaizeCyc, their

content was populated with computationally predicted annotations during their creation using

their respective annotation pipelines. This content is then reviewed in an ongoing curation

effort to integrate literature-supported experimental annotation into the metabolic resources.

One area of MaizeCyc that has received considerable manual curation effort is Gene On-

tology (GO) annotations. Because GO annotations are important for researchers interested in

gene function, we previously developed a tool to migrate GO annotations between Pathway

Tools-based metabolic databases [27]. The tool is especially important for preserving valuable

manual GO curations between different versions of the same metabolic pathway resources. Pre-

vious work reported 789 experimentally verified GO assignments in MaizeCyc, of which 179

were manually transferred to CornCyc by using this tool [27].

The extent of manual curation of reactions and pathways differs for MaizeCyc and for

CornCyc. A review of these two resources shows that 91 pathways contain some experimental
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evidence in CornCyc as opposed to 39 in MaizeCyc. Similarly, there are 120 enzyme-reaction

associations in CornCyc that contain experimental evidence. In contrast, MaizeCyc has only

20. An enzyme-reaction association is the assignment of a particular enzyme to a reaction,

where one enzyme can potentially catalyze multiple reactions. A large part of curation by

MaizeGDB has been to identify gene products confirmed to participate in a pathway, and with

a focus on selected pathways involved in hormone metabolism and photosynthesis.

Conclusions

The availability of genome-wide metabolic pathway resources provides a systems-level view

of the chemical interactions in a cell, which creates phenotypes of interest. When a metabolic

pathway resource is developed and made publicly available, scientists can then construct a

network of interactions around their enzymes of interest, and build further hypotheses based

on the annotations assigned to the genes and proteins. For example, when an enzyme of interest

is discovered to be differentially expressed and hypothesized to play a critical role in the cellular

processes, the next step is to gather its functional annotations from several database resources

for further analyses. Therefore, it is highly desirable for a metabolic pathway resource to have

annotations for larger numbers of enzymes. A higher coverage of the genome-wide enzyme

space, however, does not automatically translate into a higher accuracy of prediction for those

annotations. Most of these annotations are generated through computational pipelines that

involve multiple processing steps, and each step can contribute to the final quality of a metabolic

pathway resource. A larger number of functional assignments can indeed provide a higher

number of correct assignments (i.e., true positives), but it can also introduce a higher number

of wrong assignments (i.e., false positives).

CornCyc4.0 and MaizeCyc2.2 are based on the same maize genome assembly version (B73

RefGen v2), and reaction and pathway mapping were done using the Pathway Tools software

suite that heavily uses an “encyclopedia” of pathways “from all domains of life” called MetaCyc

[22]. CornCyc and MaizeCyc, however, were created by two different research groups based on

their pipeline for enzymatic function assignments. In this work, we harnessed the availability

of these two distinct metabolic pathway resources for maize in order to compare how initial
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enzymatic function assignments influence the final products that the biologists commonly use

in their research.

Our results demonstrate that even though both CornCyc and MaizeCyc were constructed

using the same gene model set and the same pathway assignment software, they have sig-

nificantly different content. When we compared both databases in detail, we observed that

MaizeCyc contains a larger number of annotated proteins whereas CornCyc covers a larger

metabolic space having more compounds, reactions, and pathways.

We also extracted experimentally determined enzymatic function assignments from UniProt

and analyzed how well these assignments were discovered by the computational pipelines used

during the development of the resources. We defined performance measures such as precision

and recall, and consolidated these results into a single F-score. F-score comparison demon-

strates that though CornCyc coverage is more limited than that of MaizeCyc in terms of genes,

its functional annotations are more stringent, and therefore more reliable for creating further

hypotheses.

To conclude, computational pipelines used in the initial enzymatic function assignments

and subsequent manual curation can have a large impact on the scope and range of the final

metabolic pathway resources. The features of these pipelines and how they harness experimen-

tal data determine the final accuracy and quality of these resources. Finally, the accuracy of any

metabolic pathway resource can be enhanced by dedicated and meticulous manual curation.
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Figure 3.1 Performance measure comparison between CornCyc 4.0 and MaizeCyc

2.2 based on 177 experimental protein functional annotations.
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Figure 3.2 Comparison of gene, protein, compound, reaction, and pathway statis-

tics between CornCyc4.0 and MaizeCyc2.2.
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Table 3.1 Prediction performance of CornCyc 4.0 and MaizeCyc 2.2.

True Positive False Positive False Negative

MaizeCyc 42 11 129

CornCyc 138 19 13

Table 3.2 Comparison of reaction and EC number statistics for all reactions in CornCyc 4.0

and MaizeCyc 2.2.

CornCyc Overlap MaizeCyc

Reactions 1,275 1,686 591

Oxidoreductases (EC 1) 361 463 149

Transferases (EC 2) 313 514 132

Hydrolases (EC 3) 215 254 73

Lyases (EC 4) 64 142 34

Isomerases (EC 5) 30 65 6

Ligases (EC 6) 36 78 12

Unclassified (No EC Number) 256 121 185
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Abstract

Computational models capable of predicting cellular phenotypes have become a standard

method for several applications including genetic engineering, drug discovery, and pathway

analysis. Constraint-based approaches can be used to determine the optimal route through

a genome-scale metabolic network given defined cellular objectives and the stoichiometry of

reactions catalyzed by the organism. As high-throughput methods continue to become more

easily available, there is an increasing need for metabolic models which can integrate omics

data to improve predictions of cellular function at the systems-level.

Current methods used to integrate regulatory information into constraint-based metabolic

models cannot be used to investigate the regulatory states available to an organism. We describe

a framework for integrating regulatory networks into existing metabolic models by extending

the stoichiometric matrix to include transcriptional regulators to generate Regulation Enhanced

Metabolic (REM) models. The models are capable of determining transcription factor activity

ranges under a variety of metabolic conditions.

We demonstrate the feasibility of this approach by creating a REM model for E. coli.

We first apply a series of regulatory constraints to an existing E. coli metabolic model, then

analyze the regulatory states of the cell. We predict changes in transcription factor activities

related to overproduction of short-chain fatty acid production. Finally, we describe a method
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for determining the statistical significance of the predictions based on randomization of the

regulatory network.

Introduction

As new applications for metabolic modeling continue to be developed, the scope and com-

plexity of these models must grow to accommodate them [1]. In particular, there is a need

for methods which integrate transcriptional regulatory and metabolic models. One recently

proposed method demonstrates the utility of applying constraint-based methods to consider

how regulated metabolic activity may exert some influence over the regulators themselves [2]

by constraining regulatory states to those which facilitate a viable growth phenotype. Other re-

cent studies [3, 4] have found regulatory interventions in E. coli which synergize with metabolic

interventions predicted by constraint-based metabolic models. Such cases highlight the need

for models which can integrate regulatory and metabolic networks to not only predict optimal

metabolic states, but predict optimal regulatory states as well.

There are several existing methods, such as PROM [5] and E-Flux [6], which are able to

predict cellular growth phenotypes with greater accuracy by including expression data and/or

transcriptional regulation. These methods constrain the solution space of predicted metabolic

fluxes by limiting flux through reactions based on a transcriptional regulatory state. These

tools use expression data to define a relationship between gene expression and the reactions

catalyzed by that gene’s products such that they associate higher gene expression with greater

metabolic flux. Such methods are not able to predict regulatory states as they require a single

regulatory state to be defined when creating the model, and are thus unable to optimize the

regulatory network in the context of a defined metabolic network.

Here we describe a novel approach to integrating the transcriptional regulatory and metabolic

networks of E. coli to form a Regulation Enhanced Metabolic (REM) model. The method makes

use of predictive regulatory network models to generate Linear Programming (LP) formulated

constraints which are then linked to reactions in the metabolic network. The combined model

optimizes both regulatory and metabolic states. We show the utility of this model by predicting

regulatory states for E. coli during overproduction of short-chain fatty acid.
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Methods

Overview of Model Integration

This method takes in a regulatory network and integrates it with a corresponding metabolic

network (Figure 4.1). The relative influence of a regulator against a particular target gene

is computed through analysis of gene expression data. Regulators are matched to reactions

using the Gene Protein Reaction (GPR) rules provided in the metabolic model. An equation

describing how transcriptional regulators influence the target reaction is generated for each

reaction. These are appended to the stoichiometric matrix of the metabolic model as follows: 1)

a column is created for each transcription factor, 2) a row representing the transcription factor

constraints affecting a given reaction is added for each reaction in the model, and 3) the weights

representing the regulatory response of a reaction to changes in transcription factor activity is

added to the corresponding row/column of the matrix. This method of integration introduces

a set of variables representing transcriptional regulator activities which can be optimized using

existing methods for analyzing constraint-based networks.

Both reactions and transcription factor activities can be compared between a wild-type

strain and a hypothetical mutant strain. For cases where a reaction flux is different in the

mutant strain, existing metabolic engineering frameworks [7, 8] can predict interventions which

will transform the wild-type strain into the mutant strain. Since regulatory constraints are not

stoichiometrically accurate due to the stochastic nature of transcriptional regulation, we define

a novel method to determine the significance of changes in transcriptional regulatory activities.

Regulatory Network Inference

The network inference methods used in this research, cMonkey and Inferelator [9, 10],

have previously been used to infer the regulatory network of several organisms including H.

salinarum [11] and Saccharomyces cerevisiae [12]. The cMonkey and Inferelator algorithms

together form a pipeline which takes in a compendium of gene expression data and outputs a

regulatory network model. The cMonkey algorithm performs biclustering as a way to address

complexity of the data. Biclusters group putatively co-regulated genes (rows) across similar
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experimental conditions (columns) based on coherence in expression data and additional infor-

mation including gene networks and motif analysis. Inferelator is a regression algorithm which

performs additive linear regression of known regulators across the set of biclusters generated

by cMonkey. Inferelator selects a parsimonious model by performing L1 shrinkage.

Network Integration

Metabolic models can simulate metabolic phenotypes under steady state conditions. Constraint-

based methods have been available for decades [13], however we refer to [14] for detailed in-

formation on the Flux Balance Analysis (FBA) method and Flux Variability Analysis (FVA)

method. Briefly, FBA is framed as a linear programming problem:

max cT v

subject to

 Sv = 0

aj ≤ vj ≤ bj

(4.1)

where S is the stoichiometric matrix, v is the vector of reaction fluxes, a is the lower bound for

reaction j, and b is the upper bound for reaction j. The objective can be either maximization

or minimization of the objective function, which is typically defined using cT to maximize

the biomass equation. Other objective functions can be specified, such as MOMA [15] or the

production of a specific compound. FVA simply calls the FBA method repeatedly to maximize,

then minimize each reaction in the network. This gives a lower and upper flux value for each

reaction.
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Our proposed method modifies the FBA formulation by adding additional constraints tying

flux through a reaction to the transcription factor activities of the genes associated with that

reaction:

max cT v

subject to



Sv = 0

vj < β1 ∗ TF1 + β2 ∗ TF2 + ...βi ∗ TFi

aj ≤ vj ≤ bj

0 ≤ TFi ≤ 1000

(4.2)

where the additional constraint links the flux of reaction j to the activation of its enzyme as

defined by the combination of regulatory response parameters β and regulator activities TF .

The variable TFi represents the activity of transcription factor i. The variable βi represents the

regulator response strength of the transcription factor to this specific target gene. These values

are determined in a data-driven manner using network inference tools such as Inferelator [9].

The regulator response variables predicted by Inferelator are given in the form:

β1 ∗ TF1 + β2 ∗ TF2 + ...βi ∗ TFi = TargetExpressionj (4.3)

We define a relationship between transcription factor activation of an enzyme’s expression and

flux through the enzyme’s reaction, given by the equation:

β1 ∗ TF1 + β2 ∗ TF2 + ...βi ∗ TFi = vj (4.4)

The TF values represent transcription factor activity for the transcription factor, while the β

values represent the affinity for the promoters of the genes catalyzing the reaction. A negative

β value represents gene repression.

The lower and upper bounds for regulators are set to 0 and 1000 respectively. The lower

values represent the fact that a transcription factor cannot have a negative activity. The upper

values are chosen to be arbitrarily large such that the new regulatory constraints can span the

scope of the existing metabolic states.
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Randomization Method for Identifying Significant Regulatory Changes

Using the REM model, transcriptional regulatory activities can be predicted using FBA

and FVA using the same optimization techniques as are used for metabolic fluxes. FVA is used

to determine both the upper and lower range of each transcription factor activity in the system.

Changes in transcription factor activity ranges under mutant conditions imply a relationship

between the regulator and the mutant phenotype. Several interesting outcomes are possible

when comparing transcription factor activity ranges. If the regulator is predicted to turn on or

off, the interaction is considered interesting. If the activity increases or decreases, the interac-

tion may be interesting if the shift is great enough. While changes in metabolic flux are defined

stoichiometrically and represent a difference defined in grams [dry weight] per hour, changes

in transcription factor activities are unitless and cannot be compared directly. Therefore, we

propose a randomization method for identifying significant transcriptional regulatory shifts in

the REM model (Figure 4.2).

In order to determine when a regulatory shift is significant, we must determine if the

network response to the selected regulatory model is significant. This method generates semi-

randomized networks such that the regulatory response variables are randomized while the

network structure is not. New regulatory response variables are sampled from the empiri-

cal distribution of regulatory response variables predicted by the regulatory network inference

algorithm in order to generate randomized regulatory models. Positive values represent tran-

scription factor activation of a gene, while negative values represent repression of a gene. A

regulatory response of 0 represents no interaction between a transcription factor and a gene.

This method does not allow regulatory interactions to be broken or created, only the strength

or the direction of the interaction can change.

Each randomized regulatory model is integrated with the metabolic model to generate a

series of semi-random REM models. FVA is used to calculate the feasible range for each

transcription factor activity in order to determine each regulatory shift under the mutant

condition. By comparing the predicted change to the those generated by the randomized

models, we can compute how likely the predicted value is to have been found at random using
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a two-tailed probability calculation. Predicted values that are significantly greater than the

random values can be interpreted to mean that the represented transcription factor needs to

become more active, while predicted values significantly lower than the random values represent

transcription factors that need to become less active.

Results

Case Study: Short Chain Fatty Acid Production in E. coli

We applied our method to generate a Regulation Enhanced Metabolic (REM) model for the

overproduction of short-chain fatty acids in the organism E. coli MG1655. cMonkey found 430

biclusters across 4,266 genes and 466 conditions. Each bicluster contained between 7 and 34

genes (mean of 20 genes per cluster) and were associated with between 19 and 284 experimental

conditions (mean of 233 conditions per cluster). Inferelator assigned no regulators to 21 of the

biclusters, and generated 67,709 transcription factor to gene regulatory interactions across the

remaining biclusters. There were an average of 7.9 predictors per bicluster.

These interactions represent the regulatory response of the target genes to the expression

levels of their regulators. When Inferelator determined that a regulator could invoke different

levels of response in the target gene under different conditions, two or more interactions between

the same regulator and gene were created. For the purposes of this work, we only consider

the first interaction, although averaging the interactions may be more representative of the

interaction under novel conditions.

Regulator response values produced by Inferelator ranged from -0.3933184 to 0.9019466.

This network is interpreted as a set of possible regulatory interactions that may include both

direct and indirect regulation. Comparison with RegulonDB [16] gold standard interaction set

showed a low recovery rate for true interactions. RegulonDB contains 4,269 transcription factor

to gene interactions. The Inferelator recovered 11% (474) of these interactions, however the

recovered interactions are on average stronger than then those not present in RegulonDB (p-

value 2.2e-16). This suggests that removing very weak interactions may improve the quality of
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the network. A visual inspection of the distribution of values did not indicate a clear threshold

to designate as a “weak” interaction, therefore we did not remove any weak interactions.

We compare the regulatory state for E. coli growth to the regulatory state for short-chain

fatty acid (C6) overproduction. The base iAF1260 [17] model was modified to include fatty

acid transport reactions prior to integration with the regulatory network. C6 production was

simulated by maximizing the C6 export reaction “EX hxa(e)”. Flux Variability Analysis was

used to compare the regulatory ranges available to the model for both wild-type growth and

C6 export with no growth.

For each transcriptional regulator, a range was calculated representing the feasible activity

levels of that regulator. By comparing the overproduction mutant to the wild-type strain,

changes in regulatory state become apparent. Differences in ranges are expressed as a unitless

value. These values represent transcriptional regulator activity on a positive scale from 0 to

1000. We found 14 regulators that shifted from off to on, and 12 that shifted from on to off

(Table 4.1).

There are several genes whose activity is known to be related to fatty acid production.

Previous studies [4] have found that deletion of fabR and up-regulation of fadR can improve

fatty acid production. Interestingly, our model predicted the deletion of fadR and up-regulation

of fabR. The regulators gadW and gadX positively influence the acid resistance system in E. coli

are also thought to improve tolerance to high fatty acid production [18]. Our model agrees with

the previous study, predicting both of these transcription factors to be up-regulated. In order

to determine if the regulatory changes predicted by this model were significant, we applied our

randomization method to generate 124 simulations comparing C6 overproduction to wild-type

growth. For each simulation, we collected the upper and lower range for each transcription

factor. Predictions for all transcription factors are available in Appendix Table C.1.
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Discussion

Impact of Network Inference Method on Model Quality

The selection of the Inferelator network inference algorithm for use in generating REM

models was motivated by several factors, including maturity of the algorithm and the fact that

Inferelator performs a simple linear regression allowing for a more direct integration with the

metabolic model. However, it is difficult to characterize the impact this choice had on the

quality and accuracy of the resulting model. Since Inferelator infers both direct and indirect

regulatory influences, it includes many interactions which do not represent direct binding of

the transcription factor to the target gene (or gene operon). In fact, Inferelator recovered very

few known direct interactions in E. coli. It is possible that the use of a network inference

algorithm which only considers known direct regulatory interactions may improve the ability

for our REM model to predict direct regulatory responses such as those for fabR and fadR in

C6 overproduction.

The results produced during the C6 overproduction case study were encouraging but leave

room for improvement. Most notable was the fact that fadR and fabR regulators were predicted

to have the opposite effect of what has been shown in biological studies. These regulators

directly regulate the fatty acid pathways, which makes them obvious targets of interest in a

study of fatty acid production. While our model did not correctly predict the direct fatty

acid pathway regulators, it was able to correctly identify the indirect effects of the gad acid

resistance system by predicting up-regulation of gadW and gadX.

Network Randomization

The regulatory network model represents both the interaction between a transcription factor

and its target as well as the regulatory response of the activation or repression. Biologically,

the regulatory response variables attempt to capture the interaction between various regulators

on a single target gene. A regulatory response may vary under different environmental and

cellular conditions, however these dynamics are not truly represented in a linearly regressed

model. Randomization of the regulatory network in this proposed method randomizes the
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regulatory response variables in order to test the sensitivity of the REM model to changes in

regulatory responses.

It may be interesting to also randomize the structure of the regulatory network. Biolog-

ically, randomizing the regulatory network would test the model’s sensitivity to the network

structure predicted by the regulatory network inference algorithm. Our efforts to generate

randomization in the network structure were only partially successful. We found that changes

in the regulatory network structure frequently produced infeasible models, which increased the

difficulty of producing a significant number of samples for testing significance of regulatory

shifts as well as introduced additional challenges interpreting such randomization. It may be

interesting in future work to introduce “soft” regulatory constraints that can be relaxed in

order to improve model feasibility during the randomization testing.

Conclusion

One of the benefits of an integrated constraint-based regulatory and metabolic network

model has over simple network analysis is that system level constraints may elucidate non-

intuitive interactions important for a metabolic function of interest. For example, when over-

producing fatty acids, it is fairly intuitive that the fatty acid biosynthesis and degradation

regulators may have a strong influence over the flow of material to fatty acid production. The

direct interaction between these regulators and target reactions of interest make them obvious

targets of interest. However, producing fatty acids may lead to additional constraints on other

parts of the network, such as the acid resistance system. Such interactions might be considered

non-intuitive as there is not a direct link between the fatty acid reactions and these regulators.

Such interactions are only visible when taken in context of the whole system.

In this study we present a novel way to predict both regulatory and metabolic states by

integrating both networks into a constraint-based model. We additionally present a method

for determining the significance of predictions made with this model. We demonstrated the

feasibility of our method by predicting the regulatory states of E. coli during fatty acid over-

production and by applying our randomization method to this model in order to determine

significance of the predicted regulatory shifts.
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Materials

Mapping Inferred Regulatory Network to iAF1260 Reactions

Inferelator generates a predictive regulatory network based on the biclusters produced by

cMonkey. This network links transcription factors to target biclusters. In order to integrate

the regulation into the metabolic model, we require a network which links transcription factors

to metabolic reactions. We first expand the network such that every gene in the bicluster is

regulated by every transcription factor linked to that bicluster. Essentially, this duplicates each

column (bicluster) once for each gene in the bicluster, resulting in a network of transcription

factors linked to genes.

Frequently, a single transcription factor will be linked to multiple clusters containing the

same gene. We only consider the first link (in numerical order by bicluster). The transcription

factor to gene links are then mapped to iAF1260 reactions using Gene-Protein-Reaction (GPR)

rules. GPR rules describe the relationship between genes and reactions and are used to indicate

when multiple genes are associated with a reaction (i.e. protein complexes, isozymes, etc.). We

consider only the first gene mentioned in each GPR rule in order to simplify the mapping

process.

Identification of Transcription Factors

The complete list of transcription factors in E. coli MG1655 was obtained from EcoCyc

[19]. This list was used as input to the cMonkey algorithm. This list also served as a map to

convert between gene “B-number” IDs and gene common names.

Gene Expression Data

We use the Many Microbe Microarray Database M3D [20] (version 4, build 6) normal-

ized expression data for E. coli publically available at http://m3d.mssm.edu/. This dataset

provides a large array of experimental conditions while mitigating variations in platform and

chipsets.

http://m3d.mssm.edu/
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Metabolic Model of E. coli

While the newer model iJO1366 [21] is available, the authors report both an increase in

scope and a decrease in prediction accuracy. The iAF1260 model [17] of E. coli metabolism

was used both for the higher accuracy and to provide a consistent comparison to previous

work. This model was loaded into the Matlab environment using COBRA Toolbox [22]. All

subsequent simulations were performed using modified COBRA routines in Matlab with the

Gurobi linear programming (LP) solver.

Definition of Difference Between Transcription Factor Activity Ranges

Flux Variability Analysis generates a range of feasible values by indicating an upper and

a lower bound. All values between those bounds are considered feasible. There are several

ways to indicate a difference between to ranges of values, however we settled on a calculation

based on the splitting the difference the upper and lower bounds and comparing that value.

We calculate a single value representing the shift in regulatory range using the formula:

regulatory shift =
wtupperBound − wtlowerBound

2
−
mutupperBound −mutlowerBound

2
(4.5)

which calculates the difference between the center of the wild type regulatory range and the

center of the mutant regulatory range for each regulator.
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Figure 4.1 Overview of Integration Method. A) A large compendium of expression data repre-

senting a broad array of experimental conditions is used to compute the regulatory

network. Transcriptional regulators are related to metabolic reactions using the

products of their target genes. We generate regulatory constraints from these inter-

actions and integrate them into the stoichiometric matrix of the metabolic model.

B) The metabolic and regulatory ranges are determined using Flux Variability

Analysis (FVA). Comparison between the wild-type and mutant strain allows iden-

tification of reactions and regulator activities which must change in the mutant

metabolic network. Several methods exist to predict interventions in metabolic re-

actions (case 2 and 3). In this paper, we focus on methods to predict interventions

for transcriptional regulators (case 1 and 3).
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Table 4.1 Transcriptional regulators which were predicted to be turned on or turned off in the

C6 overproduction E. coli mutant strain when compared with the wild-type growth

condition.

Regulator Name WT-Lower WT-Upper Mutant-Lower Mutant-Upper Change

bglJ 8.359491 8.618312 0 0.000345873 Turned off

csgD 2.10038 2.188148 0 0.000158402 Turned off

envR 5.551524 5.771021 0 0.000440512 Turned off

hupB 12.07819 12.13302 0 0.000240964 Turned off

iscR 6.252992 6.383168 0 0.000194162 Turned off

melR 16.03569 16.50607 0 0.000156418 Turned off

mhpR 7.950241 8.361945 0 0 Turned off

modE 1.138875 1.223445 0 0.000540972 Turned off

oxyR 9.925755 9.963603 0 0.000290612 Turned off

phoB 9.177673 9.332022 0 0.000157026 Turned off

phoR 3.318422 3.369362 0 0.397491085 Turned off

puuR 4.909688 5.114984 0 0.000949356 Turned off

cra 0 0.013704 10.37113 10.37535547 Turned on

crp 0 0.073513 4.067635 4.067749219 Turned on

dcuR 0 0.070202 7.131594 7.159531347 Turned on

fabR 0 0.02895 7.863744 7.864754432 Turned on

gadW 0 0.007195 32.48569 32.49279498 Turned on

gadX 0 0.00183 29.90562 29.91128164 Turned on

hyfR 0 0.003844 3.196545 3.196896824 Turned on

lsrR 0 0.049588 8.809217 8.814015115 Turned on

malI 0 0.014342 2.46917 2.477270986 Turned on

metR 0 0.071923 26.83228 26.83865725 Turned on

nanR 0 0.010803 6.571156 6.588342704 Turned on

rcnR 0 0.012832 8.624754 8.637378081 Turned on

sdiA 0 0.025528 10.5212 10.52197642 Turned on

ulaR 0 0.029808 16.55478 16.56569136 Turned on
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5. GENERAL CONCLUSIONS

General Discussion

As advances to computational techniques and high-throughput technologies continue to ac-

celerate the reliance of biological research on information and omics data, questions regarding

the quality and value of our biological data will become increasingly critical to our understand-

ing of biological processes. Our ability to integrate various types of data, both in terms of the

biological processes they represent and the inherent levels of quality we assign this data, will

have a significant impact on the future course of the field of bioinformatics and computational

biology. In this dissertation, we have identified and contributed to three issues regarding the

integration of biological data.

In Chapter 2, we proposed a method for merging a high-value subset of data into a hetero-

geneous database. We presented the software CycTools, which is able to externally modify a

Pathway Genome Database (PGDB) through the Pathway Tools application programming in-

terface (API). We demonstrated the utility of this tool by effecting the transfer of high-quality

gene ontology (GO) annotations from one PGDB to another. We tested this process by mi-

grating 147 manually curated GO annotations from MaizeCyc to CornCyc in order to improve

the overall quality of CornCyc annotations.

The CycTools software was also designed to modify an existing PGDB by adding, removing,

or changing content in order to align it to the known metabolic processes of a substrain of the

organism represented by the existing PGDB. This feature is especially salient in metabolic

engineering applications, as iterative modifications to an organisms metabolism are rapidly

made and the performance of the mutant strain assessed. Directed mutations are usually in

the form of a gene addition or deletion, resulting in a mutant strain which is highly related
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to the parent strain. By rapidly generating PGDB databases with these interventions, users

benefit from the built-in analysis features provided by the PGDB, including but not limited to

features such as omics overlays and metabolic modeling when analyzing the mutant strain.

The second area of data integration we addressed was the need for methods of explicitly

handling high-value subsets of data present in the context of larger knowledge bases. In Chapter

3, we described computational approaches to evaluating the impact on the quality of biological

pathway databases derived from computational enzymatic functional annotation pipelines. We

analyzed existing pathway databases CornCyc [1] and MaizeCyc [2] in order to assess their

genomic, metabolic, and pathway content. We reasoned that two databases built from the same

gene model set and the same pathway inference software should attribute their differences to

their unique enzymatic function annotation pipelines. Using software we developed, we were

able to automatically map biological objects between the databases in order to quantify their

similarities and differences, and assess their coverage of metabolic space through the use of

Enzyme Commission annotations.

Our analysis showed that both corn databases were led to very different conclusions as

a result of the differences in the methods used during their generation. However, while the

similarities between CornCyc and MaizeCyc allowed for a direct comparison of their content,

there were additional factors contributing to their differences besides their choice of enzymatic

function prediction pipelines. Each database includes separate manually curated data. They

were also derived from different versions of the MetaCyc database. A more powerful argument

could be made for the effect of the computational pipeline by controlling these additional

factors. However, by analyzing the publicly available versions of these databases, we were able

to provide a stronger case for which database would better suit the needs of maize researchers.

The final area of data integration which we addressed was the need for computational models

allowing for integrated analysis of multiple levels of omics data. Such models are needed in

order to predict cellular functions under novel conditions. In Chapter 4, we proposed a novel

computational model which integrates transcriptional regulatory and metabolic networks. This

model provides researchers a unique perspective when investigating the interactions between

systems-wide metabolic and regulatory networks by predicting the cell-wide transcriptional
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regulator activities consistent with a metabolic flux state. we demonstrated the feasibility

of this method by applying it to the generation of short-chain fatty acids in E. coli. This

model was in particular able to capture the interaction between fatty acid over-production and

over-expression of the acid resistance system.

In order to determine when regulatory shifts predicted by the model are significant, we

proposed a novel method of applying randomization to the integrated model in order to generate

a randomized sample of regulatory shift data. This is a difficult problem as methods used to

solve constraint-based metabolic models typically provide a single optimal solution and are

not subject to randomly selected parameters. By randomizing the regulatory network prior to

integrating it with the metabolic network, we were able to produce a series of semi-random

networks which allowed for the sampling of possible regulatory shifts for each transcription

factor. Significant shifts can then be determined by comparing the predicted regulatory shift

to those in the randomized models.

Recommendations for Future Work

An accurate characterization of the difference in quality between two biological databases

requires an accurate method of mapping similar biological entities between databases. While

the software presented in Chapter 3 is able to make large-scale automated comparison between

two similar databases, the process required specific knowledge of the database structures and

idiosyncrasies. Such comparisons continue to largely rely on matching the names of objects,

which can be complicated by seemingly innocent typographical changes such as the use of

“alpha” vs. “α” or the inclusion of html-style markup tags. Especially troublesome are exam-

ples where “corrections” to a standardized identifier (such as a chemical InChI string, or the

splitting of a reaction into multiple steps) is not propagated to databases using these identifiers.

The problem of updates and corrections to newer versions of MetaCyc also played an im-

portant role in the comparison between CornCyc and MetaCyc. It is likely that the fact both

databases were generated using different versions of MetaCyc had an impact on the comparison

between them. A more robust comparison of the computational enzymatic function prediction

pipeline effects would involve recreating each database using the same MetaCyc version and
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without any manual curation. A study of this nature could then be extended by varying

each step of the process, such as the initial gene model assembly or the reaction and pathway

inference step.

In Chapter 4, understanding the complex interactions between gene expression and metabolic

flux is crucial when designing regulatory constraints. We make the assumption of a direct, lin-

ear relationship such that an increase in gene expression always leads to an increase in the

metabolic flux of the reactions catalyzed by that gene’s products. This is almost certainly not

the case, but remains a useful assumption. It allows the integrated model to be formulated

as an Linear Programming (LP) problem. LP formulations are computationally tractable at

the genome-scale for E. coli, and this assumption only requires gene expression data which is

readily available.

It would be interesting to vary the regulatory network inference algorithm used in Chapter 4

to determine if a network of only known direct interactions could improve results when using the

model. The cMonkey/Inferelator method includes many indirect interactions and performed

poorly at recovering known direct interactions. This may have contributed to the model failing

to correctly predict the direct transcriptional regulators fabR and fadR.
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APPENDIX A. CYCTOOLS USER GUIDE

Introduction

CycTools is an interface for accessing and updating data in a BioCyc family Pathway/Genome

Database (PGDB). Access to the database provided by the Pathway Tools programmatic API.

The JavaCycO library allows conversion of Java based commands into queries which can be

understood by the Pathway Tools API. In order to use CycTools, a server running Pathway

Tools and JavaCycO must be available. Because of the requirements of JavaCycO, this server

must be running on a Unix-like environment, such as Ubuntu. JavaCycO requires the Java

Runtime Environment (JRE) version 1.7 or higher on both the host and client machines. Be-

cause the server portion of this tool must be run on a linux-like OS, the installation guide is

provided for Linux (Ubuntu) only. The client portion of this tool can be run on any OS that

supports java 1.7 or above.

Installation Guide

While CycTools does not need to be installed to run, it depends on other software which

must be installed before CycTools can be used. The general steps to using CycTools include:

1. Install Java SDK on Server

2. Install Pathway Tools on Server

3. Install JavaCycO on Server

After installation is complete, running CycTools will involve launching Pathway Tools in API

mode, launching JavaCycO, then launching CycTools and connecting to the JavaCycO instance.

The following instructions assume the machine is running Ubuntu 12.04.
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Install Java JDK

Java 1.7 JDK (java development kit) or higher must be installed on both the host and client

machine. For windows or Mac machines, follow the instructions here http://www.java.com/

en/download/manual.jsp.

1. Check java version:

• java -version

Verify installation of version 1.7 or above of the JDK. The JRE will not have the tools

necessary to compile JavaCycO.

2. Install java jdk

• sudo apt-get install openjdk-7-jdk

3. Verify that the correct version of java is set as default

• sudo update-alternatives –config java

If only one java version is installed, no action is needed. If multiple versions are installed,

select the java-7 jdk option (see Figure A.1).

Installing Pathway Tools

A local installation of Pathway Tools on a Unix-like system is required for accessing PGDB

information through CycTools. The server that Pathway Tools is installed to can be the same

machine that CycTools will be run from, or another machine accessible to the client. Installation

instructions for Pathway Tools can be found on the pathway tools website. Note that while

Pathway Tools is currently free for academic research purposes, a license request must be

made to access the installer. At of the time of this writing, the request can be made here:

http://biocyc.org/download-bundle.shtml. This guide assumes Pathway Tools version

17.5 is installed using the default settings and file locations as a single user (i.e. not as the

Administrator).

http://www.java.com/en/download/manual.jsp
http://www.java.com/en/download/manual.jsp
http://biocyc.org/download-bundle.shtml
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Installing JavaCycO

JavaCycO relies on the libunixdomainsocket.so libraray, which uses a UnixDomainSocket

to communicate with Pathway Tools. Since UnixDomainSocket is only available on Unix-like

systems, JavaCycO must be installed on a Unix-like operating system. JavaCycO must be

installed on the same machine as the Pathway Tools installation.

1. Copy the CycTools v0.1.0-beta.jar file to your preferred installation directory. It is rec-

ommended to install JavaCycO in the “ptools-local” directory created by Pathway Tools.

2. Run the install JavaCycO.sh file by double clicking the file and selecting “Run in Termi-

nal”.

• Install location defaults to current folder, but can be changed by user during install.

• If you have java installed in a location other than the default for Ubuntu, you will

need to modify the installer script in a text editor to point to the location of the

jni.h file.

The server portion of JavaCycO, the JavacycServer, can now be run by double clicking the

runJavacycServer.sh file. This must be run in terminal mode.

Installing CycTools

CycTools is a stand-alone java application which can run on any operating system ”orting

java. Java 1.7 must be installed on the client machine in order to run CycTools. On Linux-type

systems, you may have to set the permissions to allow CycTools.jar file to be executable by

using chmod u+x on the file. Run CycTools either by double clicking the jar directly (may not

work if jar files are not associated with java on your machine), double clicking the appropriate

run CycTools file (bat file for windows, sh file for linux) or with the terminal command:

• java jar CycTools.jar

In order to successfully connect to a JavaCycO instance, Pathway Tools must be running on a

linux-like machine in API mode:
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• ./pathway-tools api

* From the directory pathway tools was installed to in step 2.2

The JavaCycO server must also be running on the same machine as Pathway Tools:

• ./runJavacycServer.sh

* From the directory JavaCycO was installed to in step 2.3

CycTools Instructions

CycTools can connect to a local or remote instance of JavaCycO. Enter the IP address of

the server (localhost if on the same machine) and the port (default 4444). The username and

password are not necessary unless set up during the JavaCycO installation.

Frame Viewer

The frame viewer tool is used to inspect the data contents of a single frame in the PGDB.

Frame names can be entered directly, or a substring search can be performed to look for frames

with a given substring in their name.

Start by entering a frame ID or search term in the search box. Select the frame type

that you would like to search for (exact frame ID matches will be returned regardless of type

selected). Then press submit (or press enter in the search box). If any matches are found, a

window will pop-up displaying the search results. If an exact frame ID match was found, it

will be indicated in the top of the display window. Other frames which match by substring

will be displayed below. Options are displayed with the frame ID in parenthesis followed by

the display name of the frame (if one exists). Selecting a frame and pressing OK will load that

frame in the frame view area.

Frames are displayed in simple ASCII text. The structure of the display is as follows: the

name of the frame is displayed first. This is followed by a series of slot labels, one per line, with

the number of values in that slot in parenthesis behind the slot label. Slot values for a given

slot name are shown, one per line, indented once from their slot label. Some slot values have

slot-value-annotations. If this is the case, on the line following a slot value will be two dashes
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(–) followed by the annotation label, two indents in. Annotation values follow the annotation

label.

After all slots, values, and annotations, the superclasses of the frame are printed, along

with the JavaCycO object type that was associated with this frame and the database that the

frame was loaded from.

The frame viewer can display any frame in the PGDB, including instance and class frames.

Most slot and annotation labels exist as frames which can be viewed.

BioCyc Import

The BioCyc Import tool is designed to make importing spreadsheet data into frame objects

in the PGDB easy. The import utility takes as input a spreadsheet formatted file of data, maps

the data to frames in the PGDB, previews the resulting changes to the PGDB, and performs

the update of the PGDB with the spreadsheet data.

Select Database and Import Type

Import types include

1. Slot Value Import

2. Annotation Value Import

3. GO Term Import

4. Create Transcriptional Regulation

5. Delete Frame and Dependents

For the slot value option, the first column must be the exact frame ID of the frame to be

modified. The following column headers must match the slot labels of the frame to be changed.

Values in that column represent slot values (and can be separated by the multiple value delimiter

if multiple values are desired). As many columns as desired can be imported at once. Only one

frame object is allowed per line, a single frame can have multiple rows of updates.
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For the annotation value option, the first column must again be the exact frame ID of the

frame to be modified. The second column must be the slot label of the slot to be annotated.

The values in this column are the values to be annotated. Note that you cannot use multiple

values here, or it would not be possible to know what value is to be annotated.

The GO Term option uses the format ID, GO Term, PubMedID, EVCode, Time Stamp

(mm-dd-yyyy hh-mm-ss), Curator. This option will trigger Pathway Tools to automatically

import additional GO Term information for any GO annotations imported. The time stamp

will be converted to Lisp date time format before importing.

The Create Transcriptional Regulation option uses the format Regulator, Regulatee, Mode.

It will create new regulation instances in setting the regulator as having a transcriptional

regulatory effect on the regulate of the type specified in mode (“-” for downregulation, “+”

for upregulation). The regulator and regulatee IDs must be valid internal identifiers in the

database (alternate identifiers cannot be used). As such, the alternate identifier search feature

is skipped when performing this type of import. The new regulation frames will be assigned

unique sequential identifiers automatically.

The Delete Frame option only requires the ID of the frames to be deleted in the first column.

This frame and all dependents will be deleted from the database. If the frames to be deleted

are gene frames, then all protein products and associated enzyme reactions will be deleted.

Select Options

Select the data file which is to be uploaded to the PGDB.

1. Select Import Type: when using the Slot Value, Annotation Value import, or Delete

Frame import, this should by the frame type that is being updated. When using GO

Term import, this should be set to Proteins (where GO annotations are stored). When

using the Create Transcriptional Regulation import, this setting is ignored. This setting

is used in the search feature to narrow search results when matching an alternate identifier

to frames in the database.

2. Select Input File: select the data file to import
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3. Select File Format: the spreadsheet can either be comma-separated values or tab-separated

values

4. Multiple Value Delimiter: if multiple values are to be added to a single slot, they can be

separated with the delimiter given here. The delimiter is interpreted literally (non-regex)

and defaults to “$”. If multiple value imports are not used, this is optional.

5. Append new data to existing values?: If selected, the new data imported will be added to

the existing data in the PGDB. If not selected, the existing data will be replaced entirely

with the new data. *Only slots explicitly being imported will be affected*

6. Ignore Duplicates: if selected, CycTools will first check to see if the exact value already

is contained by the frame. If so, it will not be added again. Especially useful to check

this option if running the same import file multiple times.

7. Update Author Credits: this option can be used to assign one individual and/or one

organization to give curator credit to when importing changes. The individual or orga-

nization must already exist in the database, and will be added to the “Credits” slot as

having “Revised” the frame. This should not be set when using the Delete Frame import.

File Preview

The second step is the File Preview step. The contents of the file will be loaded to the

screen for review. Ensure that the file contains the correct information and that the file is

being loaded correctly (comma/tab separated). Note that the multiple value delimiter does

not affect preview at this stage. Pressing preview will go to the next screen. This step may

take several minutes, as every frame being updated must first be downloaded.

Preview Changes

The third step is to preview the changes to the database. At this stage, no changes have

been made to the data in the database. The list on the top shows all frames which are being

updated as per the spreadsheet data. Selecting a frame will call up the original frame data in
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the bottom left text area, and the modified data in the bottom right text area. All changes will

be highlighted in the text to assist in viewing the differences. Additionally, the next diff button

can be used to scan through the updates made to the data step by step. Be sure to verify

that the changes to the database are the changes intended. A check box is provided that will

filter out any frames from the list that do not result in modified data after the import. This

can be useful if the same import data is used multiple times. If the user is satisfied with the

proposed changes, the update database button can be pressed, which will perform the import

and modify the database. This step may take several minutes.

Commit to Database

After the update is performed, the results of the update can be reviewed in the final screen.

This will provide a log of the successful and failed imports. Use this information to verify the

success of the import, or to track down problem data. Each individual import will be listed

as either success or fail, will be timestamped, and will refer to the original row of data in the

spreadsheet which that update represents. Note that it may be possible to have several updates

refer to the same row of data.

At this point, the database is in a modified but unsaved state. If the user is satisfied with

the update, the save button will save the changes. Otherwise, the cancel button will undo all

changes to the database. The user also has the option of saving the change log to file.

Remember:

1. Always save copy of database before making changes.

2. Make sure database is unmodified at start of the import process.

3. Do not have multiple users accessing the database at this time (either through CycTools

or Pathway Tools).
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Using iPlant Atmosphere Virtual Machines

Running a Server on an Atmosphere Virtual Machine

Atmosphere provides computing resources to academic users in the form of virtual machines

which can be launched and administered by the user. This provides an ideal setting for testing

CycTools without having to set up a linux-based Pathway Tools installation on a local machine.

Atmosphere virtual machines can be set up to minimize the effort needed to run user software

Launching an Atmosphere Virtual Machine

After creating an account at http://www.iplantcollaborative.org/ and logging in to

the Atmosphere service https://atmo.iplantcollaborative.org/login/, you can create a

virtual machine on which to run CycTools. Be sure to launch atmosphere at https://atmo.

iplantcollaborative.org/application.

Launch a new instance using any suitable linux-based operating system. (CycTools was

tested using Ubuntu 12.04 Unity GUI v1 for this guide). Once the machine has launched,

access to the machine can be gained through several methods, including the web shell, VNC

(for supported virtual machines), or through a ssh or terminal program such as putty (windows).

Log into the machine using your atmosphere username and password. You will need terminal

(command line) access to the machine to continue.

Connecting through a terminal of your local machine, use the following command, replacing

with your username and your virtual machines IP address:

• ssh -X username@123.456.789.10

http://www.iplantcollaborative.org/
https://atmo.iplantcollaborative.org/login/
https://atmo.iplantcollaborative.org/application
https://atmo.iplantcollaborative.org/application
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Figure A.1 Selecting Java version from installed versions.
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Figure A.4 Web based shell access.
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APPENDIX B. SUPPLEMENTAL MATERIALS

Methods Used for Comparing CornCyc and MaizeCyc in Chapter 3.

Database Schema Structure

A Pathway Tools-based BioCyc database is organized as a collection of frames. A frame

stores information representing either a single biological entity such as a metabolite or a gene, or

a biological interaction such as a regulatory event or a pathway. Frames have named properties

called slots, which describe the object they represent, such as the name of a gene, the molecular

structure of a metabolite, or the reactions in a pathway. Frames are organized within the BioCyc

database using the Pathway Tools ontology. The root of the Pathway Tools ontology is the

frame “Things”. The frame “Things” has only one child, the frame “Frames.” Below “Frames”

the ontology branches into major divisions, including biological entities such as “Chemicals”

and “Enzymatic-Reactions”, as well as metadata and annotation data such as “Databases”,

“People”, and “Publications.” The ontology is structured such that every frame (except the

root frame “Things”) can have one or more parent frames and zero or more child frames.

Within the frame ontology, a frame can represent either a class of frames or an instance

frame. Instance frames contain specific information about biological objects, such as a partic-

ular gene or a specific chemical compound. Class frames group similar instances together and

describe the general properties of the group. Class frames such as “All Genes” or “Pathways”

define the properties that genes or pathways should specify. The class frames serve multiple

purposes, including organizing the data within the resource so that it can be more easily found

and referenced by both Pathway Tools and users, providing internal documentation describing

what objects are represented by that class, and serving as a template for creating new frames

of that class type.
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Data Structure Comparison

Classes represent the core database structure of all BioCyc databases. They are created au-

tomatically during the database generation process by Pathologic as part of the Pathway Tools

software, which selectively imports them from MetaCyc database based on enzymatic function

assignments. Since classes are imported on an as-needed basis, the inclusion or exclusion of

certain class frames can be an indication of differences in genomic and metabolic representa-

tion between two databases. If a class frame appears in two databases generated with the same

Pathway Tools version, the content of the class frame is not expected to differ other than the

changes made manually. The class information is updated only when with MetaCyc is updated.

Table B.1 shows where the class structure differs between CornCyc and MaizeCyc. The classes

unique to each database are listed in Tables B.3-B.7.

Gene and Protein Comparison

The Pathway Tools ontology defines several types of genes, but for our purposes we ignore

Phantom-Genes and Pseudo-Genes categories in the schema and consider only genes classified

under the “Genes” class. The red boxes in Figure B.1 represent Pathway Tools ontology class

frames. Class frames in CornCyc and MaizeCyc have very similar content. Figure B.1 shows

the ontology structure starting at “Genes”. The red boxes (class frames) are identical in both

CornCyc and MaizeCyc, showing the similarity in their organization. However, the blue boxes

(instance frames) are not only labeled differently, they are placed in different locations in the

Pathway Tools ontology. CornCyc, for example, has several genes placed directly under the

Genes class, while MaizeCyc has a larger number of genes placed under the Unclassified-Genes

class. There are 214 unclassified genes in MaizeCyc, but only 4 in CornCyc, mainly due to

differences in computational pipelines and, to a smaller extent, in manual curation.

MaizeCyc and CornCyc classify their data differently within the Pathway Tools Ontology.

MaizeCyc includes all gene data under the “ORF” category, while CornCyc includes most of its

genes under the “ORF” category and some under the “Genes” category (see Figure B.1). This

suggests that the most appropriate ontology category to compare gene data is at the “Genes”
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class and below. In CornCyc, 43 genes are stored directly under the “Genes” category. These

are listed in Table B.2.

The text in the boxes of Figure B.1 represents internal identifiers for the frames in CornCyc

and MaizeCyc. CornCyc internally assigned GDQC prefixes for genes, while MaizeCyc assigned

GBWI prefixes for the same genes. Therefore, we are unable to match genes between CornCyc

and MaizeCyc using frame id. Since the genes in both databases were annotated with their

gene model names and transcript number suffixes, we are able to use a modified synonym

search to match genes. For each gene, the gene model name was identified and the transcript-

specific suffix stripped from the name. The resulting gene model names were matched between

CornCyc and MaizeCyc.

CornCyc represents multiple splice variants for genes, while MaizeCyc only stores a single

canonical transcript per gene for 99.5% of the genes it contains. Since Pathway Tools does

not specify a standard format for storing transcript data, the transcript information is stored

in gene objects using gene names suffixed with either a “ P##” (for protein) or “ T##” (for

transcript), where ## represents a two-digit number to identify a given transcript. When

matching transcripts, we homogenized the names by ensuring that all transcripts used the “T”

suffix instead of the “P” suffix.

Reaction and Compound Comparison

Common names of reactions are not consistent between both resources. This can be due to

either typographical differences or missing information either resource. Approximately 63 reac-

tions were not given a descriptive common name in CornCyc but were given one in MaizeCyc,

and 66 reactions were not given a descriptive name in MaizeCyc but were given one in Corn-

Cyc. Examples of typographical differences include the use of special characters (beta-carotene

3-hydroxylase vs. β-carotene 3-hydroxylase), formatting markup (tryptophan<em>N</em>-

monooxygenase vs. tryptophan N-monooxygenase), and equivalent names (2-oxo-3-phenylpropanoate

dioxygenase vs. phenylpyruvate dioxygenase). Due to naming convention differences, we had

greater success matching based on frame IDs rather than reaction names.
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Compounds are imported from MetaCyc during the early database creation steps of Patho-

logic on an as-needed basis. Since both CornCyc and MaizeCyc imported compounds from

MetaCyc, we were able to match them based on frame ID’s. For each compound matched in

this way, we checked to see if the compound names and InChI strings matched. InChI strings are

designed to facilitate computational representations of chemical compounds, therefore InChI

matches should verify that the compounds have the same structure for more accurate matching.

We found that many compounds which matched based on frame ID did not match name or

InChI string. This is likely due their use of different source versions of MetaCyc used during

their creation.

Pathway Comparison

Pathways are imported from MetaCyc during the Pathologic inference steps based on the

reaction complement of the database. Since both CornCyc and MaizeCyc imported pathways

from MetaCyc, we were able to match pathways based on frame IDs. Superpathways were

excluded from the matching step as they simply represent a collection of standard pathways.
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Table B.1 The distribution of classes in CornCyc v4.0 and MaizeCyc v2.2. Although the

Pathway Tools ontologies for CornCyc and MaizeCyc are very similar, there are

slight differences in protein, compound, and pathway class presence between the

two resources.

CornCyc Overlap MaizeCyc

Gene Classes 0 247 0

Proteins Classes 13 377 32

Compound Classes 18 2,675 16

Reaction Classes 0 39 0

Pathway Classes 0 512 3
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Table B.2 Genes listed as direct children of Genes class in Corncyc v4.0

FrameID CommonName

CISZOG1 czog1

CISZOG2 czog2

CKX1 cko1

G-10478 sm2

G-10667 ZmDMAS1

G-10708 YS1

G-11275 pp

G-11284 LPE1

G-11369 tps23

G-11534 ADH1

G-12030 Z-ISO

G-12034 ZDS

G-12279 TPS6

G-14667 cpps2

G-14794 Bx7

G-1588 zpu1

G-3021 iaglu

G-3441 CHI MAIZE

G-5541 OBT14DM

G-7161 MPAO

G-7822 Bx6

G-7841 Igl

G-7842 Bx1

G-7861 Bx2

G-7862 Bx3

G-7863 Bx4

G-7864 Bx5

G-8201 Bx8

G-8202 Bx9

G-8221 Glu1

G-8361 MIPS

G-8381 lpa3

G-8441 Ipk

G-9254 CKS

G-9834 TPS1

G-9837 TPS10

GDQC-114715 spi1

GDQC-114717 bx7

GDQC-114719 yuc1

GDQC-114720 na1

GDQC-114728 vp15

GDQC-119610 lox10

|me1| me1
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Table B.3 Protein classes unique to CornCyc

|kiwellin|
|mitochondrial-intermediate-protein|
|kissper|
|endothelin-1|
|Mitochondrial-Preproteins|
|RAD21-Cohesin-Subunits|
|Processed-Mitochondrial-Proteins|
|big-endothelin|
|Octapeptides|
|mature-protein|
|kith|
|Large-peptides|
|Small-peptides|
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Table B.4 Protein classes unique to MaizeCyc

|Oxidized-Rusticyanins|
|helper-component-proteinease|
|Apo-AsbD-Proteins|
|picornavirus-polyprotein|
|togavirus-structural-polyprotein|
|type-IV-prepillin|
|fucosylated-protein|
|SoxZY-S-Thiocysteine-Sulfate|
LIMULUS-CLOTTING-FACTOR-B

|poliovirus-polyprotein|
|Non-lipoylated-domains|
|synaptobrevin|
|larger-subunit-of-tyrosine-aminotransfer|
|Cleaved-Synaptobrevin|
|pro-interleukin-1beta|
|Azurins|
|Reduced-Azurins|
|complement-subcomponent-C1s|
|EGF-domain|
|Lipoylated-domains|
|NPRS-Aryl-Carrier-Proteins|
|repressor-LexA|
|Sulfur-binding-protein|
|Oxidized-Azurins|
|Archaeal-Preflagellins|
|limulus-proclotting-enzyme|
|Potyvirus-Polyproteins|
|proacrosin|
|Reduced-Rusticyanins|
|Rusticyanins|
|flavivirus-polyprotein|
|Cleaved-togavirus-Struct-Polyproteins|
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Table B.5 Compound classes unique to CornCyc

TRIPEPTIDES

|tRNA-with-ribothymidine-54|
|Piperdines|
CPD-14375

|Phytoalexins|
|Glucosyl-Cermaides|
|Anthocyanidin-3-O-sophorosides|
|Oligo-ADP-Rib|
|4-Hydroxyisoflavones|
|Coniferyl-Esters|
|N-acetyl-D-glucosamine-asparagine|
|Imidazoles|
|Organic-heteromonocyclic-compounds|
|a-diazole|
NADHX

|a-glycopeptide-D-mannosyl-Nsup4sup-N-ace|
|Folatepolyglutamate-n|
|4-Methoxyisoflavones|

Table B.6 Compound classes unique to MaizeCyc

14-BETA-D-XYLANS

CPD-1790

|7-hydroxyisoflavonoids|
SPHINGOSINE-CERAMIDES

14-ALPHA-D-GALACTURONIDE

|Cyanidin-3-O-rutinosides|
|D-xylooligosaccharides|
CPD1G-1530

|Anthocyanin-3-O-beta-D-glucosides|
|1-Acylglycero-Phosphocholines|
|Protein-3-phospho-L-histidines|
|DNA-Cytosine|
CPD-12999

|Glucosyl-Ceramides-II|
|Cyanidin-rutinoside-glucosides|
|Xyloglucans-Galactose|
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Table B.7 Pathway classes unique to MaizeCyc

|UDP-Sugars|
CYCLITOLS

REDUCTANTS
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APPENDIX C. LARGE TABLES AND FIGURES

Table C.1 Predicted change in regulatory states between wild-type and C6 fatty acid over-

production for 198 transcription factors in E. coli compared to bootstrapped ran-

domized simulations. p-values calculated with Wilcoxon Rank Sum non-parametric

test. Mean and standard deviation refer to the bootstrapped sample.

GeneName TFName Mean StdDev Percentile Value p-Value

yafQ b0225 0.919656 3.619031 100 25.965993 0.088195

kdpE b0694 1.621517 5.878051 100 31.38697 0.088195

rcdA b0846 0.817841 4.799085 100 15.656963 0.088195

yeiL b2163 0.165941 3.14029 100 21.007779 0.088195

yqhC b3010 0.942437 3.931373 100 16.88873 0.088195

zntR b3292 0.60279 4.164618 100 18.646093 0.088195

gadW b3515 1.091868 4.663192 100 32.485643 0.088195

metR b3828 0.538641 4.776521 100 26.799508 0.088195

ulaR b4191 0.653071 4.48879 100 16.545332 0.088195

trpR b4393 1.29439 4.489113 100 21.711904 0.088195

appY b0564 0.488574 3.272473 98.387097 9.728861 0.099035

sdiA b1916 0.586896 3.6786 98.387097 10.508827 0.099035

fhlA b2731 0.618114 4.485686 98.387097 9.730605 0.099035

cspA b3556 0.66976 4.602606 97.580645 10.520861 0.104841

gadX b3516 2.416135 9.148602 96.774194 29.907534 0.110913

xylR b3569 1.808196 3.712448 96.774194 10.055584 0.110913

ascG b2714 0.248416 3.663328 95.967742 6.753869 0.11726

acrR b0464 0.983779 4.511283 95.16129 10.00488 0.123889

lsrR b1512 0.520542 4.511775 95.16129 8.786822 0.123889

rcnR b2105 0.680593 4.308918 95.16129 8.62465 0.123889

cra b0080 0.972719 4.967339 94.354839 10.366392 0.130806

cdaR b0162 0.219743 4.571962 94.354839 7.463722 0.130806

fabR b3963 0.239404 4.579339 94.354839 7.849774 0.130806

narP b2193 1.303675 4.842723 93.548387 10.238224 0.138019

glcC b2980 1.816376 4.380252 93.548387 10.426439 0.138019

nanR b3226 0.516051 3.672247 93.548387 6.574348 0.138019

soxR b4063 0.551179 2.883188 93.548387 5.180561 0.138019
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Table C.1 (Continued)

GeneName TFName Mean StdDev Percentile Value p-Value

nemR b1649 0.712302 3.965519 91.935484 8.69043 0.153361

fliZ b1921 0.712365 3.584575 91.935484 5.77343 0.153361

atoC b2220 0.554242 3.164078 91.935484 5.195283 0.153361

dcuR b4124 0.70309 4.540258 91.129032 7.110462 0.161502

rclR b0305 0.416424 3.013916 90.322581 5.663238 0.169966

lacI b0345 0.421215 4.364873 89.516129 7.293177 0.178758

birA b3973 0.243034 4.257245 88.709677 5.141066 0.187884

yehT b2125 1.469128 4.302893 87.096774 6.105103 0.207158

rutR b1013 -0.834348 11.370709 86.290323 7.130464 0.217316

ydeO b1499 0.710657 3.963857 86.290323 5.740057 0.217316

uxuR b4324 0.224848 5.559894 86.290323 5.577602 0.217316

uhpA b3669 0.717141 4.410935 83.870968 2.924995 0.249928

xapR b2405 0.829492 5.75291 83.064516 5.818024 0.261522

hyfR b2491 1.664679 4.063123 83.064516 3.194799 0.261522

argR b3237 0.649456 4.183308 83.064516 4.068615 0.261522

mqsA b3021 1.425714 5.659237 80.645161 2.617498 0.298511

ebgR b3075 1.080137 3.655438 79.032258 3.429317 0.325025

cynR b0338 0.096447 4.255345 77.419355 2.789948 0.353025

malI b1620 -0.050646 5.625932 76.612903 2.46605 0.367581

bluR b1162 0.539474 4.249831 75 1.866868 0.397795

crp b3357 2.418458 7.015185 72.580645 4.030936 0.445824

bolA b0435 0.336684 4.102324 67.741935 -0.000056 0.551138

dinJ b0226 1.109076 3.897682 66.935484 0.07428 0.56981

adiY b4116 1.756053 4.830244 62.096774 0.595502 0.687691

mazF b2782 0.134375 3.76605 61.290323 0 0.708206

hcaR b2537 0.192781 4.247086 60.483871 -0.000174 0.728934

relB b1564 -0.197256 4.824183 59.677419 -0.000304 0.749863

paaX b1399 0.357723 3.961783 58.870968 -0.000108 0.770977

flhC b1891 0.307521 4.68469 58.870968 0 0.770977

dicA b1570 -0.063913 4.962645 57.258065 -0.001645 0.813704

alaS b2697 0.482968 4.784174 57.258065 -0.000173 0.813704

purR b1658 0.946287 4.004312 54.83871 -0.000144 0.878809

fur b0683 0.408054 4.025711 54.032258 -0.000167 0.900717

galR b2837 0.92883 6.596679 54.032258 0 0.900717

rhaS b3905 -0.048093 5.189086 54.032258 -0.000583 0.900717
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Table C.1 (Continued)

GeneName TFName Mean StdDev Percentile Value p-Value

feaR b1384 1.032456 3.872958 53.225806 -0.000036 0.922701

ihfA b1712 0.320073 4.385945 53.225806 -0.000239 0.922701

mlrA b2127 0.657176 2.859202 53.225806 -0.000078 0.922701

nadR b4390 0.22827 3.291414 51.612903 -0.000925 0.966829

phoP b1130 -0.619036 4.741953 50.806452 -0.000303 0.98894

accB b3255 1.517044 4.101309 50.806452 -0.000071 0.98894

nagC b0676 0.416646 3.40218 50 -0.001012 1

hns b1237 0.389189 6.694878 49.193548 0 0.98894

glpR b3423 0.874641 5.141547 48.387097 -0.000249 0.966829

dnaA b3702 0.834066 4.455244 47.580645 -0.000168 0.944744

hdfR b4480 1.13788 5.028532 47.580645 -0.000605 0.944744

fnr b1334 0.075841 3.610398 45.967742 -0.002616 0.900717

aidB b4187 1.295289 4.609071 45.16129 -0.000855 0.878809

cbl b1987 -0.548147 4.68527 42.741935 -0.002041 0.813704

cusR b0571 0.173992 5.164836 41.935484 -0.001612 0.792263

lexA b4043 0.170472 4.257978 41.129032 -0.001626 0.770977

gutM b2706 0.103235 2.853801 40.322581 -0.009163 0.749863

pepA b4260 -0.801884 6.09355 40.322581 -0.004629 0.749863

stpA b2669 0.154854 4.36517 39.516129 -0.004993 0.728934

cpxR b3912 1.620008 3.595818 39.516129 -0.001058 0.728934

dpiA b0620 1.927723 7.578516 38.709677 -0.006886 0.708206

deoR b0840 -0.402376 5.13186 38.709677 -0.004674 0.708206

tdcR b3119 0.329075 4.316862 38.709677 -0.001282 0.708206

prpR b0330 1.194768 5.756557 37.903226 -0.005438 0.687691

yefM b2017 0.669356 6.580668 37.903226 -0.003843 0.687691

exuR b3094 0.158165 4.148834 37.903226 -0.004797 0.687691

fis b3261 0.185131 3.07042 37.903226 -0.00035 0.687691

arsR b3501 1.033118 3.681809 37.903226 -0.001105 0.687691

rbsR b3753 0.758011 3.548673 37.903226 -0.006734 0.687691

lrp b0889 0.676262 3.61461 37.096774 -0.001788 0.667404

lrhA b2289 0.383798 4.126458 37.096774 -0.006657 0.667404

nikR b3481 -0.254175 3.866402 37.096774 -0.015716 0.667404

ypdB b2381 -0.083937 4.377119 36.290323 -0.003692 0.647356

yqjI b3071 0.229761 4.770469 36.290323 -0.036811 0.647356

idnR b4264 0.672098 3.716308 36.290323 -0.001009 0.647356
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Table C.1 (Continued)

GeneName TFName Mean StdDev Percentile Value p-Value

caiF b0034 0.427132 5.290358 35.483871 -0.001098 0.627562

allR b0506 0.086234 4.59684 35.483871 -0.000473 0.627562

rstA b1608 0.708104 4.468501 35.483871 -0.007075 0.627562

kdgR b1827 0.101524 3.140228 35.483871 -0.029703 0.627562

lysR b2839 0.085932 4.770694 35.483871 -0.022785 0.627562

comR b1111 1.018877 4.678022 34.677419 -0.031837 0.608032

cysB b1275 0.382432 3.56923 34.677419 -0.002908 0.608032

rcsB b2217 0.531676 4.910919 34.677419 -0.005997 0.608032

cytR b3934 0.972223 4.344861 34.677419 -0.005092 0.608032

rob b4396 0.157059 5.081176 34.677419 -0.006152 0.608032

betI b0313 0.650113 5.256368 33.870968 -0.015722 0.588778

putA b1014 1.247164 5.021114 33.870968 -0.005504 0.588778

fadR b1187 0.874113 4.93287 33.870968 -0.002053 0.588778

gcvA b2808 0.928578 3.20236 33.870968 -0.00219 0.588778

qseB b3025 0.573898 5.394733 33.870968 -0.006243 0.588778

iclR b4018 1.278492 4.152653 33.870968 -0.000845 0.588778

cueR b0487 0.806312 4.759597 33.064516 -0.005801 0.56981

pgrR b1328 -0.080529 3.969905 32.258065 -0.228832 0.551138

chbR b1735 1.20529 4.099974 32.258065 -0.007834 0.551138

lldR b3604 -0.672132 4.770775 31.451613 -0.304741 0.532773

metJ b3938 1.290231 4.828648 31.451613 -0.002048 0.532773

tyrR b1323 0.763857 4.081907 30.645161 -0.002153 0.514722

rcsA b1951 0.973931 4.193846 30.645161 -0.008901 0.514722

glrR b2554 1.009056 4.629046 30.645161 -0.003607 0.514722

mazE b2783 0.578431 3.512233 30.645161 -0.006498 0.514722

glnG b3868 1.145631 5.374847 30.645161 -0.027858 0.514722

murR b2427 1.038577 3.592849 29.83871 -0.011745 0.496995

tdcA b3118 1.534206 4.333921 29.83871 -0.003849 0.496995

rpiR b4089 1.142205 4.512219 29.83871 -0.046364 0.496995

nhaR b0020 1.16862 3.574749 29.032258 -0.001719 0.479598

torR b0995 0.785239 4.013394 29.032258 -0.007795 0.479598

rtcR b3422 1.082299 4.487101 29.032258 -0.00135 0.479598

araC b0064 0.57865 4.395256 28.225806 -0.55016 0.462539

ada b2213 1.211109 4.24066 28.225806 -0.011333 0.462539

mntR b0817 0.742222 4.406387 27.419355 -0.002491 0.445824
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Table C.1 (Continued)

GeneName TFName Mean StdDev Percentile Value p-Value

dhaR b1201 -0.240369 5.448691 26.612903 -0.004259 0.429458

mlc b1594 0.774611 6.428501 26.612903 -0.006134 0.429458

nac b1988 2.297817 5.938084 25.806452 -0.003213 0.413447

sgrR b0069 0.42957 4.262785 25 -0.104819 0.397795

argP b2916 0.342141 4.882111 25 -0.036061 0.397795

ttdR b3060 1.506688 5.409094 25 -0.003174 0.397795

agaR b3131 1.731155 4.673198 25 -0.008551 0.397795

mcbR b1450 -0.18693 7.573531 24.193548 -0.020894 0.382505

leuO b0076 0.760143 4.201202 23.387097 -0.025136 0.367581

pdhR b0113 1.192798 2.899522 23.387097 -0.002875 0.367581

ecpR b0294 1.939033 4.508814 23.387097 -0.002624 0.367581

fldB b2895 0.294166 3.57244 22.580645 -0.007316 0.353025

narL b1221 0.938225 4.297437 21.774194 -0.022521 0.33884

marR b1530 0.635695 3.670826 21.774194 -0.081893 0.33884

norR b2709 2.150247 6.310322 21.774194 -0.126313 0.33884

malT b3418 1.232262 4.772522 21.774194 -0.017945 0.33884

mtlR b3601 0.466694 3.888206 21.774194 -0.009416 0.33884

zraR b4004 1.066001 4.252393 21.774194 -0.002396 0.33884

envY b0566 0.611948 4.033521 20.16129 -0.700258 0.311582

allS b0504 0.91734 4.388762 19.354839 -0.010201 0.298511

mngR b0730 1.381351 4.249192 19.354839 -0.005729 0.298511

csgD b1040 0.327306 3.421979 19.354839 -2.144185 0.298511

hypT b4327 1.499359 4.46169 18.548387 -0.005713 0.285812

mprA b2684 0.520725 3.598116 17.741935 -0.036376 0.273482

rhaR b3906 -0.238405 4.915264 16.935484 -4.228046 0.261522

hipB b1508 0.986167 2.910174 16.129032 -0.014856 0.249928

srlR b2707 1.324201 3.451051 15.322581 -0.00351 0.238698

dsdC b2364 1.834424 4.238244 14.516129 -0.00825 0.227828

modE b0761 -0.580469 10.400814 13.709677 -1.18089 0.217316

hipA b1507 1.16265 3.336948 11.290323 -0.142533 0.187884

ompR b3405 1.075542 4.409475 10.483871 -4.565284 0.178758

gntR b3438 1.374321 4.400577 8.870968 -3.183695 0.161502

nrdR b0413 -0.405302 4.823164 8.064516 -7.874614 0.153361

zur b4046 0.94573 4.690901 8.064516 -3.910839 0.153361

phoR b0400 1.102055 3.748464 7.258065 -3.145146 0.145535
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Table C.1 (Continued)

GeneName TFName Mean StdDev Percentile Value p-Value

envR b3264 1.196468 4.482216 5.645161 -5.661052 0.130806

relE b1563 1.167041 5.021102 4.83871 -7.749675 0.123889

puuR b1299 0.889007 4.066593 4.032258 -5.011861 0.11726

pspF b1303 1.057475 3.792235 4.032258 -4.952479 0.11726

evgA b2369 0.352683 5.197896 4.032258 -15.110033 0.11726

soxS b4062 0.204607 3.817785 4.032258 -8.289854 0.11726

yoeB b4539 1.034568 4.760594 3.225806 -10.171796 0.110913

iscR b2531 1.67281 6.208229 1.612903 -6.317983 0.099035

yiaJ b3574 1.731902 5.962735 1.612903 -4.871243 0.099035

oxyR b3961 0.721954 4.392949 1.612903 -9.944534 0.099035

basR b4113 1.205515 4.548228 1.612903 -7.076171 0.099035

mhpR b0346 1.109807 4.747093 0.806452 -8.156068 0.093489

hupB b0440 1.142156 5.098686 0.806452 -12.105485 0.093489

marA b1531 0.359241 3.295065 0.806452 -10.824022 0.093489

slyA b1642 0.41485 4.122021 0.806452 -8.216641 0.093489

baeR b2079 0.963827 4.525735 0.806452 -12.211249 0.093489

creB b4398 1.42335 5.634084 0.806452 -11.827355 0.093489

phoB b0399 0.833039 4.150607 0 -9.254769 0.088195

ihfB b0912 1.315517 3.88809 0 -56.700736 0.088195

uidR b1618 1.463413 3.865873 0 -14.313008 0.088195

flhD b1892 -0.091484 3.910091 0 -21.018625 0.088195

csiR b2664 0.918404 4.42976 0 -17.353502 0.088195

gadE b3512 0.465011 5.19784 0 -13.238294 0.088195

asnC b3743 0.113147 4.194924 0 -23.125725 0.088195

ilvY b3773 1.230951 4.708258 0 -14.177744 0.088195

melR b4118 1.40598 5.05061 0 -16.270801 0.088195

cadC b4133 1.398553 4.715246 0 -38.843936 0.088195

nsrR b4178 1.285708 5.349467 0 -31.154859 0.088195

treR b4241 1.22839 4.87084 0 -15.963621 0.088195

bglJ b4366 1.298395 4.213126 0 -8.488729 0.088195

arcA b4401 1.014951 4.57753 0 -24.578894 0.088195
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,

(PYRUVATE NIL (

(OCELOT−GFP: :PARENTS |2−Oxo−carboxylates | )
(NON−STANDARD−INCHI "InChI=1S/C3H4O3/c1-2(4)3(5)6/h1H3 ,(H,5,6)/p-1" )

(ATOM−CHARGES (6 −1))
( INCHI "InChI=1S/C3H4O3/c1-2(4)3(5)6/h1H3 ,(H,5,6)/p-1" )

(DBLINKS (CHEMSPIDER "96901" NIL | kothar i | 3563632303 NIL NIL)

(PUBCHEM "107735" NIL | taltman | 3466375285 NIL NIL)

(KNAPSACK "C00001200" NIL | ach i1 | 3445698172 NIL NIL)

(CHEBI "15361" NIL | taltman | 3452363604 NIL NIL)

(LIGAND−CPD "C00022" NIL | kr | 3346617699 NIL NIL) (CAS "127-17-3" )

(UM−BBD−CPD "c0159" NIL | kawakami | 3278871244 NIL NIL ) )

( :CREATION−DATE 3107123668)

(SYNONYMS "alpha-ketopropionic acid" "BTS" "&alpha;-ketopropionic acid"

"acetylformic acid" "pyroracemic acid" "2-oxopropanoic acid"

"pyruvic acid" "2-oxopropanoate" "2-oxo-propionic acid" )

(GIBBS−0 −114.9d0 )
(APPEARS−IN−LEFT−SIDE−OF PEPDEPHOS−RXN PEPSYNTH−RXN)

(MOLECULAR−WEIGHT 87 .055)

(DISPLAY−COORDS−2D (−10803 −2997) (−3700 1184) (3921 −2553)
(−3700 9434) (3921 −10803) (10766 2035))

(STRUCTURE−BONDS (6 3 1) (5 3 2) (2 3 1) (4 2 2) (1 2 1) )

(STRUCTURE−ATOMS C C C O O O)

(COMMON−NAME "pyruvate" ) )

( (GIBBS−0 −114.9d0 CITATIONS "GibbsGroups97" ) ) )

Example C.1 An example of “Lisp-format” import formatting described in Chapter 2.
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